ﻻ يوجد ملخص باللغة العربية
The physical mechanisms that induce the transformation of a certain mass of gas in new stars are far from being well understood. Infrared bubbles associated with HII regions have been considered to be good samples of investigating triggered star formation. In this paper we report on the investigation of the dust properties of the infrared bubble N4 around the HII region G11.898+0.747, analyzing its interaction with its surroundings and star formation histories therein, with the aim of determining the possibility of star formation triggered by the expansion of the bubble. Using Herschel PACS and SPIRE images with a wide wavelength coverage, we reveal the dust properties over the entire bubble. Meanwhile, we are able to identify six dust clumps surrounding the bubble, with a mean size of 0.50 pc, temperature of about 22 K, mean column density of 1.7 $times10^{22}$ cm$^{-2}$, mean volume density of about 4.4 $times10^{4}$ cm$^{-3}$, and a mean mass of 320 $M_{odot}$. In addition, from PAH emission seen at 8 $mu$m, free-free emission detected at 20 cm and a probability density function in special regions, we could identify clear signatures of the influence of the HII region on the surroundings. There are hints of star formation, though further investigation is required to demonstrate that N4 is the triggering source.
We studied the environment of the dust bubble N10 in molecular emission. Infrared bubbles, first detected by the GLIMPSE survey at 8.0 $mu$m, are ideal regions to investigate the effect of the expansion of the HII region on its surroundings eventual
We present a multi-wavelength study to analyse the star formation process associated with the mid-infrared bubble CN 148 (H II region G10.3-0.1), which harbors an O5V-O6V star. The arc-shaped distribution of molecular CO(2-1) emission, the cold dust
Herein, we present the 12CO (J=1-0) and 13CO (J=1-0) emission line observations via the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45-m telescope (FUGIN) toward a Spitzer bubble N4. We observed clouds of three discrete velocities
We investigated the physical properties of molecular clouds and star formation processes around infrared bubbles which are essentially expanding HII regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. Five
We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies