ﻻ يوجد ملخص باللغة العربية
This paper focuses on coordinate update methods, which are useful for solving problems involving large or high-dimensional datasets. They decompose a problem into simple subproblems, where each updates one, or a small block of, variables while fixing others. These methods can deal with linear and nonlinear mappings, smooth and nonsmooth functions, as well as convex and nonconvex problems. In addition, they are easy to parallelize. The great performance of coordinate update methods depends on solving simple sub-problems. To derive simple subproblems for several new classes of applications, this paper systematically studies coordinate-friendly operators that perform low-cost coordinate updates. Based on the discovered coordinate friendly operators, as well as operator splitting techniques, we obtain new coordinate update algorithms for a variety of problems in machine learning, image processing, as well as sub-areas of optimization. Several problems are treated with coordinate update for the first time in history. The obtained algorithms are scalable to large instances through parallel and even asynchronous computing. We present numerical examples to illustrate how effective these algorithms are.
In this work, we consider alternative discretizations for PDEs which use expansions involving integral operators to approximate spatial derivatives. These constructions use explicit information within the integral terms, but treat boundary data impli
The first part of this work established the foundations of a radial duality between nonnegative optimization problems, inspired by the work of (Renegar, 2016). Here we utilize our radial duality theory to design and analyze projection-free optimizati
Block-structured adaptive mesh refinement (AMR) provides the basis for the temporal and spatial discretization strategy for a number of ECP applications in the areas of accelerator design, additive manufacturing, astrophysics, combustion, cosmology,
Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to dev
Min-max problems have broad applications in machine learning, including learning with non-decomposable loss and learning with robustness to data distribution. Convex-concave min-max problem is an active topic of research with efficient algorithms and