ترغب بنشر مسار تعليمي؟ اضغط هنا

De novo visual proteomics in single cells through pattern mining

75   0   0.0 ( 0 )
 نشر من قبل Min Xu
 تاريخ النشر 2015
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cryo-electron tomography enables 3D visualization of cells in a near native state at molecular resolution. The produced cellular tomograms contain detailed information about all macromolecular complexes, their structures, their abundances and their specific spatial locations in the cell. However, extracting this information is very challenging and current methods usually rely on templates of known structure. Here, we formulate a template-free visual proteomics analysis as a de novo pattern mining problem and propose a new framework called Multi Pattern Pursuit for supporting proteome-scale de novo discovery of macromolecular complexes in cellular tomograms without using templates of known structures. Our tests on simulated and experimental tomograms show that our method is a promising tool for template-free visual proteomics analysis.

قيم البحث

اقرأ أيضاً

225 - Somya Mani , Tsvi Tlusty 2021
Contrary to long-held views, recent evidence indicates that $textit{de novo}$ birth of genes is not only possible, but is surprisingly prevalent: a substantial fraction of eukaryotic genomes are composed of orphan genes, which show no homology with a ny conserved genes. And a remarkably large proportion of orphan genes likely originated $textit{de novo}$ from non-genic regions. Here, using a parsimonious mathematical model, we investigate the probability and timescale of $textit{de novo}$ gene birth due to spontaneous mutations. We trace how an initially non-genic locus accumulates beneficial mutations to become a gene. We sample across a wide range of biologically feasible distributions of fitness effects (DFE) of mutations, and calculate the conditions conducive to gene birth. We find that in a time frame of millions of years, gene birth is highly likely for a wide range of DFEs. Moreover, when we allow DFEs to fluctuate, which is expected given the long time frame, gene birth in the model becomes practically inevitable. This supports the idea that gene birth is a ubiquitous process, and should occur in a wide variety of organisms. Our results also demonstrate that intergenic regions are not inactive and silent but are more like dynamic storehouses of potential genes.
RNA is a fundamental class of biomolecules that mediate a large variety of molecular processes within the cell. Computational algorithms can be of great help in the understanding of RNA structure-function relationship. One of the main challenges in t his field is the development of structure-prediction algorithms, which aim at the prediction of the three-dimensional (3D) native fold from the sole knowledge of the sequence. In a recent paper, we have introduced a scoring function for RNA structure prediction. Here, we analyze in detail the performance of the method, we underline strengths and shortcomings, and we discuss the results with respect to state-of-the-art techniques. These observations provide a starting point for improving current methodologies, thus paving the way to the advances of more accurate approaches for RNA 3D structure prediction.
A multiscale mathematical model is presented to describe the de novo granulation and the evolution of multispecies granular biofilms within a continuous reactor. The granule is modelled as a spherical free boundary domain with radial symmetry. The eq uation which governs the free boundary is derived from global mass balance considerations and takes into account the growth of sessile biomass and the exchange fluxes with the bulk liquid. Starting from a vanishing initial value, the expansion of the free boundary is initiated by the attachment process, which depends on the microbial species concentrations within the bulk liquid and their specific attachment velocity. Nonlinear hyperbolic PDEs model the growth of the sessile microbial species, while quasi-linear parabolic PDEs govern the dynamics of substrates and invading species within the granular biofilm. Nonlinear ODEs govern the evolution of soluble substrates and planktonic biomass within the bulk liquid. The model is applied to an anaerobic granular-based system and solved numerically to test its qualitative behaviour and explore the main aspects of de novo anaerobic granulation: ecology, biomass distribution, relative abundance, dimensional evolution of the granules and soluble substrates and planktonic biomass dynamics within the reactor. The numerical results confirm that the model accurately describes the ecology and the concentrically-layered structure of anaerobic granules observed experimentally, and is able to predict the effects of some significant factors, such as influent wastewater composition, granulation properties of planktonic biomass, biomass density and hydrodynamic and shear stress conditions, on the process performance.
Visual patterns represent the discernible regularity in the visual world. They capture the essential nature of visual objects or scenes. Understanding and modeling visual patterns is a fundamental problem in visual recognition that has wide ranging a pplications. In this paper, we study the problem of visual pattern mining and propose a novel deep neural network architecture called PatternNet for discovering these patterns that are both discriminative and representative. The proposed PatternNet leverages the filters in the last convolution layer of a convolutional neural network to find locally consistent visual patches, and by combining these filters we can effectively discover unique visual patterns. In addition, PatternNet can discover visual patterns efficiently without performing expensive image patch sampling, and this advantage provides an order of magnitude speedup compared to most other approaches. We evaluate the proposed PatternNet subjectively by showing randomly selected visual patterns which are discovered by our method and quantitatively by performing image classification with the identified visual patterns and comparing our performance with the current state-of-the-art. We also directly evaluate the quality of the discovered visual patterns by leveraging the identified patterns as proposed objects in an image and compare with other relevant methods. Our proposed network and procedure, PatterNet, is able to outperform competing methods for the tasks described.
187 - Yisu Peng 2020
Motivation: Accurate estimation of false discovery rate (FDR) of spectral identification is a central problem in mass spectrometry-based proteomics. Over the past two decades, target decoy approaches (TDAs) and decoy-free approaches (DFAs), have been widely used to estimate FDR. TDAs use a database of decoy species to faithfully model score distributions of incorrect peptide-spectrum matches (PSMs). DFAs, on the other hand, fit two-component mixture models to learn the parameters of correct and incorrect PSM score distributions. While conceptually straightforward, both approaches lead to problems in practice, particularly in experiments that push instrumentation to the limit and generate low fragmentation-efficiency and low signal-to-noise-ratio spectra. Results: We introduce a new decoy-free framework for FDR estimation that generalizes present DFAs while exploiting more search data in a manner similar to TDAs. Our approach relies on multi-component mixtures, in which score distributions corresponding to the correct PSMs, best incorrect PSMs, and second-best incorrect PSMs are modeled by the skew normal family. We derive EM algorithms to estimate parameters of these distributions from the scores of best and second-best PSMs associated with each experimental spectrum. We evaluate our models on multiple proteomics datasets and a HeLa cell digest case study consisting of more than a million spectra in total. We provide evidence of improved performance over existing DFAs and improved stability and speed over TDAs without any performance degradation. We propose that the new strategy has the potential to extend beyond peptide identification and reduce the need for TDA on all analytical platforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا