ﻻ يوجد ملخص باللغة العربية
Contrary to long-held views, recent evidence indicates that $textit{de novo}$ birth of genes is not only possible, but is surprisingly prevalent: a substantial fraction of eukaryotic genomes are composed of orphan genes, which show no homology with any conserved genes. And a remarkably large proportion of orphan genes likely originated $textit{de novo}$ from non-genic regions. Here, using a parsimonious mathematical model, we investigate the probability and timescale of $textit{de novo}$ gene birth due to spontaneous mutations. We trace how an initially non-genic locus accumulates beneficial mutations to become a gene. We sample across a wide range of biologically feasible distributions of fitness effects (DFE) of mutations, and calculate the conditions conducive to gene birth. We find that in a time frame of millions of years, gene birth is highly likely for a wide range of DFEs. Moreover, when we allow DFEs to fluctuate, which is expected given the long time frame, gene birth in the model becomes practically inevitable. This supports the idea that gene birth is a ubiquitous process, and should occur in a wide variety of organisms. Our results also demonstrate that intergenic regions are not inactive and silent but are more like dynamic storehouses of potential genes.
A multiscale mathematical model is presented to describe the de novo granulation and the evolution of multispecies granular biofilms within a continuous reactor. The granule is modelled as a spherical free boundary domain with radial symmetry. The eq
Although accumulation of molecular damage is suggested to be an important molecular mechanism of aging, a quantitative link between the dynamics of damage accumulation and mortality of species has so far remained elusive. To address this question, we
The COVID-19 pandemic has lead to a worldwide effort to characterize its evolution through the mapping of mutations in the genome of the coronavirus SARS-CoV-2. Ideally, one would like to quickly identify new mutations that could confer adaptive adva
RNA is a fundamental class of biomolecules that mediate a large variety of molecular processes within the cell. Computational algorithms can be of great help in the understanding of RNA structure-function relationship. One of the main challenges in t
Since the sequencing of large genomes, many statistical features of their sequences have been found. One intriguing feature is that certain subsequences are much more abundant than others. In fact, abundances of subsequences of a given length are dis