ترغب بنشر مسار تعليمي؟ اضغط هنا

Forecasters Dilemma: Extreme Events and Forecast Evaluation

114   0   0.0 ( 0 )
 نشر من قبل Sebastian Lerch
 تاريخ النشر 2015
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In public discussions of the quality of forecasts, attention typically focuses on the predictive performance in cases of extreme events. However, the restriction of conventional forecast evaluation methods to subsets of extreme observations has unexpected and undesired effects, and is bound to discredit skillful forecasts when the signal-to-noise ratio in the data generating process is low. Conditioning on outcomes is incompatible with the theoretical assumptions of established forecast evaluation methods, thereby confronting forecasters with what we refer to as the forecasters dilemma. For probabilistic forecasts, proper weighted scoring rules have been proposed as decision theoretically justifiable alternatives for forecast evaluation with an emphasis on extreme events. Using theoretical arguments, simulation experiments, and a real data study on probabilistic forecasts of U.S. inflation and gross domestic product growth, we illustrate and discuss the forecasters dilemma along with potential remedies.



قيم البحث

اقرأ أيضاً

Crowdsourcing is a popular paradigm for soliciting forecasts on future events. As people may have different forecasts, how to aggregate solicited forecasts into a single accurate prediction remains to be an important challenge, especially when no his torical accuracy information is available for identifying experts. In this paper, we borrow ideas from the peer prediction literature and assess the prediction accuracy of participants using solely the collected forecasts. This approach leverages the correlations among peer reports to cross-validate each participants forecasts and allows us to assign a peer assessment score (PAS) for each agent as a proxy for the agents prediction accuracy. We identify several empirically effective methods to generate PAS and propose an aggregation framework that uses PAS to identify experts and to boost existing aggregators prediction accuracy. We evaluate our methods over 14 real-world datasets and show that i) PAS generated from peer prediction methods can approximately reflect the prediction accuracy of agents, and ii) our aggregation framework demonstrates consistent and significant improvement in the prediction accuracy over existing aggregators for both binary and multi-choice questions under three popular accuracy measures: Brier score (mean square error), log score (cross-entropy loss) and AUC-ROC.
It is often reported in forecast combination literature that a simple average of candidate forecasts is more robust than sophisticated combining methods. This phenomenon is usually referred to as the forecast combination puzzle. Motivated by this puz zle, we explore its possible explanations including estimation error, invalid weighting formulas and model screening. We show that existing understanding of the puzzle should be complemented by the distinction of different forecast combination scenarios known as combining for adaptation and combining for improvement. Applying combining methods without consideration of the underlying scenario can itself cause the puzzle. Based on our new understandings, both simulations and real data evaluations are conducted to illustrate the causes of the puzzle. We further propose a multi-level AFTER strategy that can integrate the strengths of different combining methods and adapt intelligently to the underlying scenario. In particular, by treating the simple average as a candidate forecast, the proposed strategy is shown to avoid the heavy cost of estimation error and, to a large extent, solve the forecast combination puzzle.
We study the extreme events taking place on complex networks. The transport on networks is modelled using random walks and we compute the probability for the occurance and recurrence of extreme events on the network. We show that the nodes with small er number of links are more prone to extreme events than the ones with larger number of links. We obtain analytical estimates and verify them with numerical simulations. They are shown to be robust even when random walkers follow shortest path on the network. The results suggest a revision of design principles and can be used as an input for designing the nodes of a network so as to smoothly handle an extreme event.
In the present work, we examine the potential robustness of extreme wave events associated with large amplitude fluctuations of the Peregrine soliton type, upon departure from the integrable analogue of the discrete nonlinear Schrodinger (DNLS) equat ion, namely the Ablowitz-Ladik (AL) model. Our model of choice will be the so-called Salerno model, which interpolates between the AL and the DNLS models. We find that rogue wave events essentially are drastically distorted even for very slight perturbations of the homotopic parameter connecting the two models off of the integrable limit. Our results suggest that the Peregrine soliton structure is a rather sensitive feature of the integrable limit, which may not persist under generic perturbations of the limiting integrable case.
Many natural and physical processes display long memory and extreme events. In these systems, the measured time series is invariably contaminated by noise. As the extreme events display large deviation from the mean behaviour, the noise does not affe ct the extreme events as much as it affects the typical values. Since the extreme events also carry the information about correlations in the full time series, they can be used to infer the correlation properties of the latter. In this work, from a given time series, we construct three modified time series using only the extreme events. It is shown that the correlations in the original time series and in the modified time series, as measured by the exponent obtained from detrended fluctuation analysis technique, are related to each other. Hence, the correlation exponents for a long memory time series can be inferred from its extreme events alone. This approach is demonstrated for several empirical time series.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا