ﻻ يوجد ملخص باللغة العربية
If local supersymmetry is the correct extension of the standard model of particle physics, then following Inflation the early universe would have been populated by gravitinos produced from scatterings in the hot plasma during reheating. Their abundance is directly related to the magnitude of the reheating temperature. The gravitino lifetime is fixed as a function of its mass, and for gravitinos with lifetimes longer than the age of the universe at redshift $zsimeq 2times 10^{6}$ (or roughly $6times 10^6{rm s}$), decay products can produce spectral distortion of the cosmic microwave background. Currently available COBE/FIRAS limits on spectral distortion can, in certain cases, already be competitive with respect to cosmological constraints from primordial nucleosynthesis for some gravitino decay scenarios. We show how the sensitivity limits on $mu$ and $y$ distortions that can be reached with current technology would improve constraints and possibly rule out a significant portion of the parameter space for gravitino masses and Inflation reheating temperatures.
We investigate the primordial phase of the Universe in the context of brane inflation modeled by Bogomolnyi-Prasad-Sommerfield (BPS) domain walls solutions of a bosonic sector of a 5D supergravity inspired theory. The solutions are embedded into five
We present an inflationary scenario based on a phenomenologically viable model with direct gauge mediation of low-scale supersymmetry breaking. Inflation can occur in the supersymmetry-breaking hidden sector. Although the reheating temperature from t
Many extensions of Standard Model (SM) include a dark sector which can interact with the SM sector via a light mediator. We explore the possibilities to probe such a dark sector by studying the distortion of the CMB spectrum from the blackbody shape
Very recently, the LUNA collaboration has reported a new measurement of the $d+pto {}^{3}text{He}+gamma$ reaction rate, which plays an important role in the prediction of the primordial deuterium abundance at the time of BBN. This new measurement has
The small-scale crisis, discrepancies between observations and N-body simulations, may imply suppressed matter fluctuations on subgalactic distance scales. Such a suppression could be caused by some early-universe mechanism (e.g., broken scale invari