ترغب بنشر مسار تعليمي؟ اضغط هنا

Surfaces containing two circles through each point

121   0   0.0 ( 0 )
 نشر من قبل Mikhail Skopenkov
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Mikhail Skopenkov




اسأل ChatGPT حول البحث

We find all analytic surfaces in space $mathbb{R}^3$ such that through each point of the surface one can draw two transversal circular arcs fully contained in the surface. The problem of finding such surfaces traces back to the works of Darboux from XIXth century. We prove that such a surface is an image of a subset of one of the following sets under some composition of

قيم البحث

اقرأ أيضاً

In the search for appropriate discretizations of surface theory it is crucial to preserve such fundamental properties of surfaces as their invariance with respect to transformation groups. We discuss discretizations based on Mobius invariant building blocks such as circles and spheres. Concrete problems considered in these lectures include the Willmore energy as well as conformal and curvature line parametrizations of surfaces. In particular we discuss geometric properties of a recently found discrete Willmore energy. The convergence to the smooth Willmore functional is shown for special refinements of triangulations originating from a curvature line parametrization of a surface. Further we treat special classes of discrete surfaces such as isothermic and minimal. The construction of these surfaces is based on the theory of circle patterns, in particular on their variational description.
We investigate the vertex curve, that is the set of points in the hyperbolic region of a smooth surface in real 3-space at which there is a circle in the tangent plane having at least 5-point contact with the surface. The vertex curve is related to t he differential geometry of planar sections of the surface parallel to and close to the tangent planes, and to the symmetry sets of isophote curves, that is level sets of intensity in a 2-dimensional image. We investigate also the relationship of the vertex curve with the parabolic and flecnodal curves, and the evolution of the vertex curve in a generic 1-parameter family of smooth surfaces.
We introduce and study (strict) Schottky G-bundles over a compact Riemann surface X, where G is a connected reductive algebraic group. Strict Schottky representations are shown to be related to branes in the moduli space of G-Higgs bundles over X, an d we prove that all Schottky $G$-bundles have trivial topological type. Generalizing the Schottky moduli map introduced in Florentino to the setting of principal bundles, we prove its local surjectivity at the good and unitary locus. Finally, we prove that the Schottky map is surjective onto the space of flat bundles for two special classes: when G is an abelian group over an arbitrary X, and the case of a general G-bundle over an elliptic curve.
We prove that a reduced and irreducible algebraic surface in $mathbb{CP}^{3}$ containing infinitely many twistor lines cannot have odd degree. Then, exploiting the theory of quaternionic slice regularity and the normalization map of a surface, we give constructive existence results for even degrees.
Given a compact Riemann surface $Sigma$ of genus $g_Sigma, geq, 2$, and an effective divisor $D, =, sum_i n_i x_i$ on $Sigma$ with $text{degree}(D), <, 2(g_Sigma -1)$, there is a unique cone metric on $Sigma$ of constant negative curvature $-4$ such that the cone angle at each $x_i$ is $2pi n_i$ (see McOwen and Troyanov [McO,Tr]). We describe the Higgs bundle corresponding to this uniformization associated to the above conical metric. We also give a family of Higgs bundles on $Sigma$ parametrized by a nonempty open subset of $H^0(Sigma,,K_Sigma^{otimes 2}otimes{mathcal O}_Sigma(-2D))$ that correspond to conical metrics of the above type on moving Riemann surfaces. These are inspired by Hitchins results in [Hi1], for the case $D,=, 0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا