ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniformization of branched surfaces and Higgs bundles

122   0   0.0 ( 0 )
 نشر من قبل Sorin Dumitrescu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a compact Riemann surface $Sigma$ of genus $g_Sigma, geq, 2$, and an effective divisor $D, =, sum_i n_i x_i$ on $Sigma$ with $text{degree}(D), <, 2(g_Sigma -1)$, there is a unique cone metric on $Sigma$ of constant negative curvature $-4$ such that the cone angle at each $x_i$ is $2pi n_i$ (see McOwen and Troyanov [McO,Tr]). We describe the Higgs bundle corresponding to this uniformization associated to the above conical metric. We also give a family of Higgs bundles on $Sigma$ parametrized by a nonempty open subset of $H^0(Sigma,,K_Sigma^{otimes 2}otimes{mathcal O}_Sigma(-2D))$ that correspond to conical metrics of the above type on moving Riemann surfaces. These are inspired by Hitchins results in [Hi1], for the case $D,=, 0$.



قيم البحث

اقرأ أيضاً

154 - Peter B. Gothen 2011
We give an overview of the work of Corlette, Donaldson, Hitchin and Simpson leading to the non-abelian Hodge theory correspondence between representations of the fundamental group of a surface and the moduli space of Higgs bundles. We then explain ho w this can be generalized to a correspondence between character varieties for representations of surface groups in real Lie groups G and the moduli space of G-Higgs bundles. Finally we survey recent joint work with Bradlow, Garcia-Prada and Mundet i Riera on the moduli space of maximal Sp(2n,R)-Higgs bundles.
96 - Nigel Hitchin 2017
The paper studies the locus in the rank 2 Higgs bundle moduli space corresponding to points which are critical for d of the Poisson commuting functions. These correspond to the Higgs field vanishing on a divisor of degree D. The degree D critical loc us has an induced integrable system related to K(-D)-twisted Higgs bundles. Topological and differential-geometric properties of the critical loci are addressed.
We introduce and study (strict) Schottky G-bundles over a compact Riemann surface X, where G is a connected reductive algebraic group. Strict Schottky representations are shown to be related to branes in the moduli space of G-Higgs bundles over X, an d we prove that all Schottky $G$-bundles have trivial topological type. Generalizing the Schottky moduli map introduced in Florentino to the setting of principal bundles, we prove its local surjectivity at the good and unitary locus. Finally, we prove that the Schottky map is surjective onto the space of flat bundles for two special classes: when G is an abelian group over an arbitrary X, and the case of a general G-bundle over an elliptic curve.
Using Hitchins parameterization of the Hitchin-Teichmuller component of the $SL(n,mathbb{R})$ representation variety, we study the asymptotics of certain families of representations. In fact, for certain Higgs bundles in the $SL(n,mathbb{R})$-Hitchin component, we study the asymptotics of the Hermitian metric solving the Higgs bundle equations. This analysis is used to estimate the asymptotics of the corresponding family of flat connections as we scale the differentials by a real parameter. We consider Higgs fields that have only one holomorphic differential $q_n$ of degree $n$ or $q_{n-1}$ of degree $n-1.$ We also study the asymptotics of the associated family of equivariant harmonic maps to the symmetric space $SL(n,mathbb{R})/SO(n,mathbb{R})$ and relate it to recent work of Katzarkov, Noll, Pandit and Simpson.
We give a new proof of the uniformization theorem of the leaves of a lamination by surfaces of hyperbolic conformal type. We use a laminated version of the Ricci flow to prove the existence of a laminated Riemannian metric (smooth on the leaves, tran sversaly continuous) with leaves of constant Gaussian curvature equal to -1, which is conformally equivalent to the original metric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا