ﻻ يوجد ملخص باللغة العربية
A critical aspect of quantum mechanics is the nonlocal nature of the wavefunction, a characteristic that may yield unexpected coupling of nominally-isolated systems. The capacity to detect this coupling can be vital in many situations, especially those in which its strength is weak. In this work we address this problem in the context of mesoscopic physics, by implementing an electron-wave realization of a Fano interferometer using pairs of coupled quantum point contacts (QPCs). Within this scheme, the discrete level required for a Fano resonance is provided by pinching off one of the QPCs, thereby inducing the formation of a quasi-bound state at the center of its self-consistent potential barrier. Using this system, we demonstrate a form of textit{nonequilibrium} Fano resonance (NEFR), in which nonlinear electrical biasing of the interferometer gives rise to pronounced distortions of its Fano resonance. Our experimental results are captured well by a quantitative theoretical model, which considers a system in which a standard two-path Fano interferometer is coupled to an additional, textit{intruder}, continuum. According to this theory, the observed distortions in the Fano resonance arise textit{only} in the presence of coupling to the intruder, indicating that the NEFR provides a sensitive means to infer the presence of weak coupling between mesoscopic systems.
We show that there exist a class of nonequilibrium systems for which a non-equilibrium analog of the Ginzburg-Landau (GL) functional can be constructed and propose the procedure for its derivation. As an example, we consider a small superconductor is
Nonequilibrium steady states (NESSs) in periodically driven dissipative quantum systems are vital in Floquet engineering. Here, for high-frequency drives with Lindblad-type dissipation, we develop a general theory to characterize and analyze NESSs ba
Through a combination of experiment and theory we establish the possibility of achieving strong tuning of Fano resonances (FRs), by allowing their usual two-path geometry to interfere with an additional, intruder, continuum. As the coupling strength
Understanding the interaction between cavity photons and electronic nanocircuits is crucial for the development of Mesoscopic Quantum Electrodynamics (QED). One has to combine ingredients from atomic Cavity QED, like orbital degrees of freedom, with
Nanomechanical systems are generally embedded in a macroscopic environment where the sources of thermal noise are difficult to pinpoint. We engineer a silicon nitride membrane optomechanical resonator such that its thermal noise is acoustically drive