ﻻ يوجد ملخص باللغة العربية
Nonequilibrium steady states (NESSs) in periodically driven dissipative quantum systems are vital in Floquet engineering. Here, for high-frequency drives with Lindblad-type dissipation, we develop a general theory to characterize and analyze NESSs based on the high-frequency (HF) expansion without numerically solving the time evolution. This theory shows that NESSs can deviate from the Floquet-Gibbs state depending on the dissipation type. We show the validity and usefulness of the HF-expansion approach in concrete models for a diamond nitrogen-vacancy (NV) center, a kicked open XY spin chain with topological phase transition under boundary dissipation, and the Heisenberg spin chain in a circularly-polarized magnetic field under bulk dissipation. In particular, for the isotropic Heisenberg chain, we propose the dissipation-assisted terahertz (THz) inverse Faraday effect in quantum magnets. Our theoretical framework applies to various time-periodic Lindblad equations that are currently under active research.
With the aim to reveal universal features of hadronic matter and correlated Dirac insulators in strong AC-electric fields, we study the $mathcal{N}=2$ supersymmetric QCD with a finite quark mass driven by a rotating electric field $mathcal{E}_x+imath
We investigate a mechanism to transiently stabilize topological phenomena in long-lived quasi-steady states of isolated quantum many-body systems driven at low frequencies. We obtain an analytical bound for the lifetime of the quasi-steady states whi
Prethermalization, by introducing emergent quasiconserved observables, plays a crucial role in protecting Floquet many-body phases over exponentially long time, while the ultimate fate of such quasiconserved operators can signal thermalization to inf
We investigate the Joule expansion of nonintegrable quantum systems that contain bosons or spinless fermions in one-dimensional lattices. A barrier initially confines the particles to be in half of the system in a thermal state described by the canon
We explore thermalization and quantum dynamics in a one-dimensional disordered SU(2)-symmetric Floquet model, where a many-body localized phase is prohibited by the non-abelian symmetry. Despite the absence of localization, we find an extended nonerg