ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden symmetries, instabilities, and current suppression in Brownian ratchets

37   0   0.0 ( 0 )
 نشر من قبل David Cubero
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The operation of Brownian motors is usually described in terms of out-of-equilibrium and symmetry-breaking settings, with the relevant spatiotemporal symmetries identified from the analysis of the equations of motion for the system at hand. When the appropriate conditions are satisfied, symmetry-related trajectories with opposite current are thought to balance each other, yielding suppression of transport. The direction of the current can be precisely controlled around these symmetry points by finely tuning the driving parameters. Here we demonstrate, by studying a prototypical Brownian ratchet system, the existence of {it hidden} symmetries, which escape the identification by the standard symmetry analysis, and require different theoretical tools for their revelation. Furthermore, we show that system instabilities may lead to spontaneous symmetry breaking with unexpected generation of directed transport.



قيم البحث

اقرأ أيضاً

Equations describing the evolution of particles, solitons, or localized structures, driven by a zero-average, periodic, external force, and invariant under time reversal and a half-period time shift, exhibit a ratchet current when the driving force b reaks these symmetries. The bi-harmonic force $f(t)=epsilon_1cos(q omega t+phi_1)+epsilon_2cos(pomega t+phi_2)$ does it for almost any choice of $phi_{1}$ and $phi_{2}$, provided $p$ and $q$ are two co-prime integers such that $p+q$ is odd. It has been widely observed, in experiments in Josephson-junctions, photonic crystals, etc., as well as in simulations, that the ratchet current induced by this force has the shape $vproptoepsilon_1^pepsilon_2^qcos(p phi_{1} - q phi_{2} + theta_0)$ for small amplitudes, where $theta_0$ depends on the damping ($theta_0=pi/2$ if there is no damping, and $theta_0=0$ for overdamped systems). We rigorously prove that this precise shape can be obtained solely from the broken symmetries of the system and is independent of the details of the equation describing the system.
There are deep, but hidden, geometric structures within jammed systems, associated with hidden symmetries. These can be revealed by repeated transformations under which these structures lead to fixed points. These geometric structures can be found in the Voronoi tesselation of space defined by the packing. In this paper we examine two iterative processes: maximum inscribed sphere (MIS) inversion and a real-space coarsening scheme. Under repeated iterations of the MIS inversion process we find invariant systems in which every particle is equal to the maximum inscribed sphere within its Voronoi cell. Using a real-space coarsening scheme we reveal behavior in geometric order parameters which is length-scale invariant.
We present an experimental study of the magnetic flux dependence of the critical current of a balanced SQUID with three Josephson junctions in parallel. Unlike for ordinary dc SQUIDs, the suppression of the critical current does not depend on the exa ct parameters of the Josephson junctions. The suppression is essentially limited only by the inductances of the SQUID loops. We demonstrate a critical current suppression ratio of higher than 300 in a balanced SQUID with a maximum critical current 30 nA.
We investigate directed motion in non-adiabatically rocked ratchet systems sustaining few bands below the barrier. Upon restricting the dynamics to the lowest M bands, the total system-plus-bath Hamiltonian is mapped onto a discrete tight-binding mod el containing all the information both on the intra- and inter-well tunneling motion. A closed form for the current in the incoherent tunneling regime is obtained. In effective single-band ratchets, no current rectification occurs. We apply our theory to describe rectification effects in vortex quantum ratchets devices. Current reversals upon variation of the ac-field amplitude or frequency are predicted.
564 - Amit Lakhanpal , Tom Chou 2007
We propose a stochastic process wherein molecular transport is mediated by asymmetric nucleation of domains on a one-dimensional substrate. Track-driven mechanisms of molecular transport arise in biophysical applications such as Holliday junction pos itioning and collagenase processivity. In contrast to molecular motors that hydrolyze nucleotide triphosphates and undergo a local molecular conformational change, we show that asymmetric nucleation of hydrolysis waves on a track can also result in directed motion of an attached particle. Asymmetrically cooperative kinetics between ``hydrolyzed and ``unhydrolyzed states on each lattice site generate moving domain walls that push a particle sitting on the track. We use a novel fluctuating-frame, finite-segment mean field theory to accurately compute steady-state velocities of the driven particle and to discover parameter regimes which yield maximal domain wall flux, leading to optimal particle drift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا