ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of van Hove singularities on high-Tc superconductivity in H3S

156   0   0.0 ( 0 )
 نشر من قبل Wataru Sano
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of interesting open questions for the high transition temperature (Tc) superconductivity in sulfur hydrides is why high pressure phases of H3S have extremely high Tcs. Recently, it has been pointed out that the presence of the van Hove singularities (vHs) around the Fermi level is crucial. However, while there have been quantitative estimates of Tc based on the Migdal-Eliashberg theory, the energy dependence of the density of states (DOS) has been neglected to simplify the Eliashberg equation. In this study, we go beyond the constant DOS approximation and explicitly consider the electronic structure over 40eV around the Fermi level. In contrast with the previous conventional calculations, this approach with a sufficiently large number of Matsubara frequencies enables us to calculate Tc without introducing the empirical pseudo Coulomb potential. We show that while H3S has much higher Tc than H2S for which the vHs is absent, the constant DOS approximation employed so far seriously overestimates (underestimates) Tc by ~ 60K (~ 10K) for H3S (H2S). We then discuss the impact of the strong electron-phonon coupling on the electronic structure with and without the vHs and how it affects the superconductivity. Especially, we focus on (1) the feedback effect in the self-consistent calculation of the self-energy, (2) the effect of the energy shift due to the zero-point motion, and (3) the effect of the changes in the phonon frequencies due to strong anharmonicity. We show that the effect of (1)-(3) on Tc is about 10-30K for both H3S and H2S. Eventually, Tc is estimated to be 181K for H3S at 250GPa and 34K for H2S at 140GPa, which explains the pressure dependence of Tc observed in the experiment. In addition, we evaluate the lowest order vertex correction beyond the Migdal-Eliashberg theory and discuss the validity of the Migdal approximation for sulfur hydrides.



قيم البحث

اقرأ أيضاً

Two-dimensional (2D) Van Hove singularities (VHSs) associated with the saddle points or extrema of the energy dispersion usually show logarithmic divergences in the density of states (DOS). However, recent studies find that the VHSs originating from higher-order saddle-points have faster-than-logarithmic divergences, which can amplify electron correlation effects and create exotic states such as supermetals in 2D materials. Here we report the existence of high-order VHSs in the cuprates and related high-Tc superconductors and show that the anomalous divergences in their spectra are driven by the electronic dimensionality of the system being lower than the dimensionality of the lattice. The order of VHS is found to correlate with the superconducting Tc such that materials with higher order VHSs display higher Tcs. We further show that the presence of the normal and higher-order VHSs in the electronic spectrum can provide a straightforward marker for identifying the propensity of a material toward correlated phases such as excitonic insulators or supermetals. Our study opens up a new materials playground for exploring the interplay between high-order VHSs, superconducting transition temperatures and electron correlation effects in the cuprates and related high-Tc superconductors.
The recently discovered layered kagome metals AV$_3$Sb$_5$ (A=K, Rb, Cs) exhibit diverse correlated phenomena, which are intertwined with a topological electronic structure with multiple van Hove singularities (VHSs) in the vicinity of the Fermi leve l. As the VHSs with their large density of states enhance correlation effects, it is of crucial importance to determine their nature and properties. Here, we combine polarization-dependent angle-resolved photoemission spectroscopy with density functional theory to directly reveal the sublattice properties of 3d-orbital VHSs in CsV$_3$Sb$_5$. Four VHSs are identified around the M point and three of them are close to the Fermi level, with two having sublattice-pure and one sublattice-mixed nature. Remarkably, the VHS just below the Fermi level displays an extremely flat dispersion along MK, establishing the experimental discovery of higher-order VHS. The characteristic intensity modulation of Dirac cones around K further demonstrates the sublattice interference embedded in the electronic structure. The crucial insights into the electronic structure, revealed by our work, provide a solid starting point for the understanding of the intriguing correlation phenomena in the kagome metals AV$_3$Sb$_5$.
292 - Y. Nakashima , A. Ino , S. Nagato 2011
We report an angle-resolved photoemission study of BaFe2As2, a parent compound of iron-based superconductors. Low-energy tunable excitation photons have allowed the first observation of a saddle-point singularity at the Z point, as well as the Gamma point. With antiferromagnetic ordering, both of these two van Hove singularities come down below the Fermi energy, leading to a topological change in the innermost Fermi surface around the kz axis from cylindrical to tear-shaped, as expected from first-principles calculation. These singularities may provide an additional instability for the Fermi surface of the superconductors derived from BaFe2As2.
The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as T_c0, is given by the universal expression $k_BT_c0 = e^2 Lambda / ellzeta$; $ell$ is the spacing between interacting charges within the layers, zeta is the distance between interacting layers and Lambda is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit Tc < T_c0. For the 31+ optimum compounds tested, the theoretical and experimental T_c0 agree statistically to within +/- 1.4 K. The elemental high Tc building block comprises two adjacent and spatially separated charge layers; the factor e^2/zeta arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented.
Electronic instabilities at the crossing of the Fermi energy with a Van Hove singularity in the density of states often lead to new phases of matter such as superconductivity, magnetism or density waves. However, in most materials this condition is d ifficult to control. In the case of single-layer graphene, the singularity is too far from the Fermi energy and hence difficult to reach with standard doping and gating techniques. Here we report the observation of low-energy Van Hove singularities in twisted graphene layers seen as two pronounced peaks in the density of states measured by scanning tunneling spectroscopy. We demonstrate that a rotation between stacked graphene layers can generate Van Hove singularities, which can be brought arbitrarily close to the Fermi energy by varying the angle of rotation. This opens intriguing prospects for Van Hove singularity engineering of electronic phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا