ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized canonical purification for density matrix minimization

118   0   0.0 ( 0 )
 نشر من قبل Lionel Truflandier
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A Lagrangian formulation for the constrained search for the $N$-representable one-particle density matrix based on the McWeeny idempotency error minimization is proposed, which converges systematically to the ground state. A closed form of the canonical purification is derived for which no a posteriori adjustement on the trace of the density matrix is needed. The relationship with comparable methods are discussed, showing their possible generalization through the hole-particle duality. The appealing simplicity of this self-consistent recursion relation along with its low computational complexity could prove useful as an alternative to diagonalization in solving dense and sparse matrix eigenvalue problems.

قيم البحث

اقرأ أيضاً

The $N$-representability problem is the problem of determining whether or not there exists $N$-particle states with some prescribed property. Here we report an affirmative solution to the fermion $N$-representability problem when both the density and paramagnetic current density are prescribed. This problem arises in current-density functional theory and is a generalization of the well-studied corresponding problem (only the density prescribed) in density functional theory. Given any density and paramagnetic current density satisfying a minimal regularity condition (essentially that a von Weizacker-like the canonical kinetic energy density is locally integrable), we prove that there exist a corresponding $N$-particle state. We prove this by constructing an explicit one-particle reduced density matrix in the form of a position-space kernel, i.e. a function of two continuous position variables. In order to make minimal assumptions, we also address mathematical subtleties regarding the diagonal of, and how to rigorously extract paramagnetic current densities from, one-particle reduced density matrices in kernel form.
Hochstattler, Kirsch, and Warzel showed that the semicircle law holds for generalized Curie-Weiss matrix ensembles at or above the critical temperature. We extend their result to the case of subcritical temperatures for which the correlations between the matrix entries are stronger. Nevertheless, one may use the concept of approximately uncorrelated ensembles that was first introduced in the paper mentioned above. In order to do so one needs to remove the average magnetization of the entries by an appropriate modification of the ensemble that turns out to be of rank 1 thus not changing the limiting spectral measure.
173 - Jinpeng An , Zhengdong Wang 2005
In this paper we present a criterion for the covering condition of the generalized random matrix ensemble, which enable us to verify the covering condition for the seven classes of generalized random matrix ensemble in an unified and simpler way.
We investigate the level density for several ensembles of positive random matrices of a Wishart--like structure, $W=XX^{dagger}$, where $X$ stands for a nonhermitian random matrix. In particular, making use of the Cauchy transform, we study free mult iplicative powers of the Marchenko-Pastur (MP) distribution, ${rm MP}^{boxtimes s}$, which for an integer $s$ yield Fuss-Catalan distributions corresponding to a product of $s$ independent square random matrices, $X=X_1cdots X_s$. New formulae for the level densities are derived for $s=3$ and $s=1/3$. Moreover, the level density corresponding to the generalized Bures distribution, given by the free convolution of arcsine and MP distributions is obtained. We also explain the reason of such a curious convolution. The technique proposed here allows for the derivation of the level densities for several other cases.
This paper is a natural continuation of the previous paper cite{TyuVo13} where generalized oscillator representations for Calogero Hamiltonians with potential $V(x)=alpha/x^2$, $alphageq-1/4$, were constructed. In this paper, we present generalized o scillator representations for all generalized Calogero Hamiltonians with potential $V(x)=g_{1}/x^2+g_{2}x^2$, $g_{1}geq-1/4$, $g_{2}>0$. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian, representation that explicitly determines the ground state and the ground-state energy. For generalized Calogero Hamiltonians with coupling constants $g_1<-1/4$ or $g_2<0$, generalized oscillator representations do not exist in agreement with the fact that the respective Hamiltonians are not bounded from below.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا