ﻻ يوجد ملخص باللغة العربية
The $N$-representability problem is the problem of determining whether or not there exists $N$-particle states with some prescribed property. Here we report an affirmative solution to the fermion $N$-representability problem when both the density and paramagnetic current density are prescribed. This problem arises in current-density functional theory and is a generalization of the well-studied corresponding problem (only the density prescribed) in density functional theory. Given any density and paramagnetic current density satisfying a minimal regularity condition (essentially that a von Weizacker-like the canonical kinetic energy density is locally integrable), we prove that there exist a corresponding $N$-particle state. We prove this by constructing an explicit one-particle reduced density matrix in the form of a position-space kernel, i.e. a function of two continuous position variables. In order to make minimal assumptions, we also address mathematical subtleties regarding the diagonal of, and how to rigorously extract paramagnetic current densities from, one-particle reduced density matrices in kernel form.
A Lagrangian formulation for the constrained search for the $N$-representable one-particle density matrix based on the McWeeny idempotency error minimization is proposed, which converges systematically to the ground state. A closed form of the canoni
In random walks, the path representation of the Greens function is an infinite sum over the length of path probability density functions (PDFs). Here we derive and solve, in Laplace space, the recursion relation for the n order path PDF for any arbit
We investigate the level density for several ensembles of positive random matrices of a Wishart--like structure, $W=XX^{dagger}$, where $X$ stands for a nonhermitian random matrix. In particular, making use of the Cauchy transform, we study free mult
We introduce a new density for the representation of quantum states on phase space. It is constructed as a weighted difference of two smooth probability densities using the Husimi function and first-order Hermite spectrograms. In contrast to the Wign
We derive isospectral flows of the mass density in the string boundary value problem corresponding to general boundary conditions. In particular, we show that certain class of rational flows produces in a suitable limit all flows generated by polynom