ﻻ يوجد ملخص باللغة العربية
${cal N}=4$ Super Yang-Mills theory is a highly constrained theory, and therefore a valuable tool to test the understanding of less constrained Yang-Mills theories. Our aim is to use it to test our understanding of both the Landau gauge beyond perturbation theory as well as truncations of Dyson-Schwinger equations in ordinary Yang-Mills theories. We derive the corresponding equations within the usual one-loop truncation for the propagators after imposing the Landau gauge. We find a conformal solution in this approximation, which surprisingly resembles many aspects of ordinary Yang-Mills theories. We furthermore identify which role the Gribov-Singer ambiguity in this context could play, should it exist in this theory.
In a {cal N}=1 superspace setup and using dimensional regularization, we give a general and simple prescription to compute anomalous dimensions of composite operators in {cal N}=4, SU(N) supersymmetric Yang-Mills theory, perturbatively in the couplin
We derive the Dyson-Schwinger equation of a link variable in SU(n) lattice gauge theory in minimal Landau gauge and confront it with Monte-Carlo data for the different terms. Preliminary results for the lattice analog of the Kugo-Ojima confinement criterion is also shown.
We provide a study of quantum chromodynamics with the technique of Dyson-Schwinger equations in differential form. In this way, we are able to approach the non-perturbative limit and recover, with some approximations, the t Hooft limit of the theory.
Using a technique devised by Bender, Milton and Savage, we derive the Dyson-Schwinger equations for quantum chromodynamics in differential form. We stop our analysis to the two-point functions. The t~Hooft limit of color number going to infinity is d
In this talk, we review some of the current efforts to understand the phenomenon of chiral symmetry breaking and the generation of a dynamical quark mass. To do that, we will use the standard framework of the Schwinger-Dyson equations. The key ingred