ترغب بنشر مسار تعليمي؟ اضغط هنا

Quark mass generation with Schwinger-Dyson equations

138   0   0.0 ( 0 )
 نشر من قبل Arlene Cristina Aguilar
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this talk, we review some of the current efforts to understand the phenomenon of chiral symmetry breaking and the generation of a dynamical quark mass. To do that, we will use the standard framework of the Schwinger-Dyson equations. The key ingredient in this analysis is the quark-gluon vertex, whose non-transverse part may be determined exactly from the nonlinear Slavnov-Taylor identity that it satisfies. The resulting expressions for the form factors of this vertex involve not only the quark propagator, but also the ghost dressing function and the quark-ghost kernel. Solving the coupled system of integral equations formed by the quark propagator and the four form factors of the scattering kernel, we carry out a detailed study of the impact of the quark gluon vertex on the gap equation and the quark masses generated from it, putting particular emphasis on the contributions directly related with the ghost sector of the theory, and especially the quark-ghost kernel. Particular attention is dedicated on the way that the correct renormalization group behavior of the dynamical quark mass is recovered, and in the extraction of the phenomenological parameters such as the pion decay constant.



قيم البحث

اقرأ أيضاً

93 - Marco Frasca 2020
We provide a study of quantum chromodynamics with the technique of Dyson-Schwinger equations in differential form. In this way, we are able to approach the non-perturbative limit and recover, with some approximations, the t Hooft limit of the theory. Quark mass in the propagator term goes off-shell at low-energies signaling confinement. A condition for such occurrence in the theory is provided.
We investigate the dressed quark-gluon vertex combining two established non-perturbative approaches to QCD: the Dyson-Schwinger equation (DSE) for the quark propagator and lattice-regularized simulations for the quark, gluon and ghost propagators. Th e vertex is modeled using a generalized Ball-Chiu ansatz parameterized by a single form factor $tilde X_0$ which effectively represents the quark-ghost scattering kernel. The solution space of the DSE inversion for $tilde X_0$ is highly degenerate, which can be dealt with by a numerical regularization scheme. We consider two possibilities: (i) linear regularization and (ii) the Maximum Entropy Method. These two numerical approaches yield compatible $tilde X_0$ functions for the range of momenta where lattice data is available and feature a strong enhancement of the generalized Ball-Chiu vertex for momenta below 1 GeV. Our ansatz for the quark-gluon vertex is then used to solve the quark DSE which yields a mass function in good agreement with lattice simulations and thus provides adequate dynamical chiral symmetry breaking.
192 - Marco Frasca 2019
Using a technique devised by Bender, Milton and Savage, we derive the Dyson-Schwinger equations for quantum chromodynamics in differential form. We stop our analysis to the two-point functions. The t~Hooft limit of color number going to infinity is d erived showing how these equations can be cast into a treatable even if approximate form. It is seen how this limit gives a sound description of the low-energy behavior of quantum chromodynamics by discussing the dynamical breaking of chiral symmetry and confinement, providing a condition for the latter. This approach exploits a background field technique in quantum field theory.
The dynamics of weakly coupled, non-abelian gauge fields at high temperature is non-perturbative if the characteristic momentum scale is of order |k|~ g^2 T. Such a situation is typical for the processes of electroweak baryon number violation in the early Universe. Bodeker has derived an effective theory that describes the dynamics of the soft field modes by means of a Langevin equation. This effective theory has been used for lattice calculations so far. In this work we provide a complementary, more analytic approach based on Dyson-Schwinger equations. Using methods known from stochastic quantisation, we recast Bodekers Langevin equation in the form of a field theoretic path integral. We introduce gauge ghosts in order to help control possible gauge artefacts that might appear after truncation, and which leads to a BRST symmetric formulation and to corresponding Ward identities. A second set of Ward identities, reflecting the origin of the theory in a stochastic differential equation, is also obtained. Finally Dyson-Schwinger equations are derived.
137 - I.C. Cloet , C.D. Roberts 2008
A synopsis exemplifying the employment of Dyson-Schwinger equations in the calculation and explanation of hadron electromagnetic form factors and related phenomena. In particular the contribution: presents the pion form factor computed simultaneously at spacelike and timelike momenta; reports aspects of the evolution of the nucleon and Delta masses with current-quark mass and the correlation of their mass difference with that between scalar and axial-vector diquarks; describes an estimate of the s-quark content of a dressed u-quark and its impact on the nucleons strangeness magnetic moment; and comments upon the domain within which a pseudoscalar meson cloud can materially contribute to hadron form factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا