ﻻ يوجد ملخص باللغة العربية
We present the study of the X2-class flare which occurred on the 27 October 2014 and was observed with the Interface Region Imaging Spectrograph (IRIS) and the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. Thanks to the high cadence and spatial resolution of the IRIS and EIS instruments, we are able to compare simultaneous observations of the xxi~1354.08~AA~and xxiii~263.77~AA~high temperature emission ($gtrsim$ 10~MK) in the flare ribbon during the chromospheric evaporation phase. We find that IRIS observes completely blue-shifted xxi~line profiles, up to 200 km s$^{-1}$ during the rise phase of the flare, indicating that the site of the plasma upflows is resolved by IRIS. In contrast, the xxiii~line is often asymmetric, which we interpret as being due to the lower spatial resolution of EIS. Temperature estimates from SDO/AIA and Hinode/XRT show that hot emission (log($T$)[K] $>$ 7.2) is first concentrated at the footpoints before filling the loops. Density sensitive lines from IRIS and EIS give electron number density estimates of $gtrsim$~10$^{12}$~cm$^{-3}$ in the transition region lines and 10$^{10}$~cm$^{-3}$ in the coronal lines during the impulsive phase. In order to compare the observational results against theoretical predictions, we have run a simulation of a flare loop undergoing heating using the HYDRAD 1D hydro code. We find that the simulated plasma parameters are close to the observed values which are obtained with IRIS, Hinode and AIA. These results support an electron beam heating model rather than a purely thermal conduction model as the driving mechanism for this flare.
We analyze coordinated Hinode XRT and EIS observations of a non-flaring active region to investigate the thermal properties of coronal plasma taking advantage of the complementary diagnostics provided by the two instruments. In particular we want to
The origin of the slow solar wind is still an open issue. It has been suggested that upflows at the edge of active regions (AR) can contribute to the slow solar wind. Here, we compared the upflow region and the AR core and studied how the plasma prop
The GOES X1.5 class flare that occurred on August 30,2002 at 1327:30 UT is one of the few events detected so far at submillimeter wavelengths. We present a detailed analysis of this flare combining radio observations from 1.5 to 212 GHz (an upper lim
An X1.6 flare occurred in AR 12192 on 2014 October 22 at 14:02 UT and was observed by Hinode, IRIS, SDO, and RHESSI. We analyze a bright kernel which produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking adv
In the present work we study Hinode/EIS observations of an active region taken before, during and after a small C2.0 flare in order to monitor the evolution of the magnetic field evolution and its relation to the flare event. We find that while the f