ترغب بنشر مسار تعليمي؟ اضغط هنا

Folding patterns in partially delaminated thin films

57   0   0.0 ( 0 )
 نشر من قبل Sergio Conti
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Michael Ortiz and Gustavo Gioia showed in the 90s that the complex patterns arising in compressed elastic films can be analyzed within the context of the calculus of variations. Their initial work focused on films partially debonded from the substrate, subject to isotropic compression arising from the difference in thermal expansion coefficients between film and substrate. In the following two decades different geometries have been studied, as for example anisotropic compression. We review recent mathematical progress in this area, focusing on the rich phase diagram of partially debonded films with a lateral boundary condition.


قيم البحث

اقرأ أيضاً

This paper is motivated by the complex blister patterns sometimes seen in thin elastic films on thick, compliant substrates. These patterns are often induced by an elastic misfit which compresses the film. Blistering permits the film to expand locall y, reducing the elastic energy of the system. It is natural to ask: what is the minimum elastic energy achievable by blistering on a fixed area fraction of the substrate? This is a variational problem involving both the {it elastic deformation} of the film and substrate and the {it geometry} of the blistered region. It involves three small parameters: the {it nondimensionalized thickness} of the film, the {it compliance ratio} of the film/substrate pair and the {it mismatch strain}. In formulating the problem, we use a small-slope (Foppl-von Karman) approximation for the elastic energy of the film, and a local approximation for the elastic energy of the substrate. For a 1D version of the problem, we obtain matching upper and lower bounds on the minimum energy, in the sense that both bounds have the same scaling behavior with respect to the small parameters. For a 2D version of the problem, our results are less complete. Our upper and lower bounds only match in their scaling with respect to the nondimensionalized thickness, not in the dependence on the compliance ratio and the mismatch strain. The upper bound considers a 2D lattice of blisters, and uses ideas from the literature on the folding or crumpling of a confined elastic sheet. Our main 2D result is that in a certain parameter regime, the elastic energy of this lattice is significantly lower than that of a few large blisters.
In this paper, we study the thin-film limit of the micromagnetic energy functional in the presence of bulk Dzyaloshinskii-Moriya interaction (DMI). Our analysis includes both a stationary $Gamma$-convergence result for the micromagnetic energy, as we ll as the identification of the asymptotic behavior of the associated Landau-Lifshitz-Gilbert equation. In particular, we prove that, in the limiting model, part of the DMI term behaves like the projection of the magnetic moment onto the normal to the film, contributing this way to an increase in the shape anisotropy arising from the magnetostatic self-energy. Finally, we discuss a convergent finite element approach for the approximation of the time-dependent case and use it to numerically compare the original three-dimensional model with the two-dimensional thin-film limit.
Experimental data on thin films of cylinder-forming block copolymers (BC) -- free-standing BC membranes as well as supported BC films -- strongly suggest that the local orientation of the BC patterns is coupled to the geometry in which the patterns a re embedded. We analyze this phenomenon using general symmetry considerations and numerical self-consistent field studies of curved BC films in cylindrical geometry. The stability of the films against curvature-induced dewetting is also analyzed. In good agreement with experiments, we find that the BC cylinders tend to align along the direction of curvature at high curvatures. At low curvatures, we identify a transition from perpendicular to parallel alignment in supported films, which is absent in free standing membranes. Hence both experiments and theory show that curvature can be used to manipulate and align BC patterns.
We are concerned with the dimension reduction analysis for thin three-dimensional elastic films, prestrained via Riemannian metrics with weak curvatures. For the prestrain inducing the incompatible version of the Foppl-von Karman equations, we find the $Gamma$-limits of the rescaled energies, identify the optimal energy scaling laws, and display the equivalent conditions for optimality in terms of both the prestrain components and the curvatures of the related Riemannian metrics. When the stretching-inducing prestrain carries no in-plane modes, we discover similarities with the previously described shallow shell models. In higher prestrain regimes, we prove new energy upper bounds by constructing deformations as the Kirchhoff-Love extensions of the highly perturbative, Holder-regular solutions to the Monge-Ampere equation obtained by means of convex integration.
We introduce the study of forcing sets in mathematical origami. The origami material folds flat along straight line segments called creases, each of which is assigned a folding direction of mountain or valley. A subset $F$ of creases is forcing if th e global folding mountain/valley assignment can be deduced from its restriction to $F$. In this paper we focus on one particular class of foldable patterns called Miura-ori, which divide the plane into congruent parallelograms using horizontal lines and zig-zag vertical lines. We develop efficient algorithms for constructing a minimum forcing set of a Miura-ori map, and for deciding whether a given set of creases is forcing or not. We also provide tight bounds on the size of a forcing set, establishing that the standard mountain-valley assignment for the Miura-ori is the one that requires the most creases in its forcing sets. Additionally, given a partial mountain/valley assignment to a subset of creases of a Miura-ori map, we determine whether the assignment domain can be extended to a locally flat-foldable pattern on all the creases. At the heart of our results is a novel correspondence between flat-foldable Miura-ori maps and $3$-colorings of grid graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا