ترغب بنشر مسار تعليمي؟ اضغط هنا

Blister patterns and energy minimization in compressed thin films on compliant substrates

369   0   0.0 ( 0 )
 نشر من قبل Jacob Bedrossian
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is motivated by the complex blister patterns sometimes seen in thin elastic films on thick, compliant substrates. These patterns are often induced by an elastic misfit which compresses the film. Blistering permits the film to expand locally, reducing the elastic energy of the system. It is natural to ask: what is the minimum elastic energy achievable by blistering on a fixed area fraction of the substrate? This is a variational problem involving both the {it elastic deformation} of the film and substrate and the {it geometry} of the blistered region. It involves three small parameters: the {it nondimensionalized thickness} of the film, the {it compliance ratio} of the film/substrate pair and the {it mismatch strain}. In formulating the problem, we use a small-slope (Foppl-von Karman) approximation for the elastic energy of the film, and a local approximation for the elastic energy of the substrate. For a 1D version of the problem, we obtain matching upper and lower bounds on the minimum energy, in the sense that both bounds have the same scaling behavior with respect to the small parameters. For a 2D version of the problem, our results are less complete. Our upper and lower bounds only match in their scaling with respect to the nondimensionalized thickness, not in the dependence on the compliance ratio and the mismatch strain. The upper bound considers a 2D lattice of blisters, and uses ideas from the literature on the folding or crumpling of a confined elastic sheet. Our main 2D result is that in a certain parameter regime, the elastic energy of this lattice is significantly lower than that of a few large blisters.


قيم البحث

اقرأ أيضاً

Michael Ortiz and Gustavo Gioia showed in the 90s that the complex patterns arising in compressed elastic films can be analyzed within the context of the calculus of variations. Their initial work focused on films partially debonded from the substrat e, subject to isotropic compression arising from the difference in thermal expansion coefficients between film and substrate. In the following two decades different geometries have been studied, as for example anisotropic compression. We review recent mathematical progress in this area, focusing on the rich phase diagram of partially debonded films with a lateral boundary condition.
Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition (IBAD)-MgO/Y2O3/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (Tc) of 43 K with a self-field critical current density (Jc) of 7.0 x 104 A/cm2 at 5 K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher Tc as well as better crystalline quality than Co-doped BaFe2As2 coated conductors, in-field Jc of NdFeAs(O,F) was lower than that of Co-doped BaFe2As2. These results suggest that grain boundaries in oxypnictides reduce Jc significantly compared to that in Co-doped BaFe2As2 and, hence biaxial texture is necessary for high Jc.
A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquids viscosity. Inspired by recent progresses on the dynamics of l iquid droplets on soft substrates, we here study the relaxation of a viscous film supported by an elastic foundation. Experiments involve thin polymer films on elastomeric substrates, where the dynamics of the liquid-air interface is monitored using atomic force microscopy. A theoretical model that describes the coupled evolution of the solid-liquid and the liquid-air interfaces is also provided. In this soft-levelling configuration, Laplace pressure gradients not only drive the flow, but they also induce elastic deformations on the substrate that affect the flow and the shape of the liquid-air interface itself. This process represents an original example of elastocapillarity that is not mediated by the presence of a contact line. We discuss the impact of the elastic contribution on the levelling dynamics and show the departure from the classical self-similarities and power laws observed for capillary levelling on rigid substrates.
410 - A. Muller 2009
Magnetite thin fims have been grown epitaxially on ZnO and MgO substrates using molecular beam epitaxy. The film quality was found to be strongly dependent on the oxygen partial pressure during growth. Structural, electronic, and magnetic properties were analyzed utilizing Low Energy Electron Diffraction (LEED), HArd X-ray PhotoElectron Spectroscopy (HAXPES), Magneto Optical Kerr Effect (MOKE), and X-ray Magnetic Circular Dichroism (XMCD). Diffraction patterns show clear indication for growth in the (111) direction on ZnO. Vertical structure analysis by HAXPES depth profiling revealed uniform magnetite thin films on both type of substrates. Both, MOKE and XMCD measurements show in-plane easy magnetization with a reduced magnetic moment in case of the films on ZnO.
We consider a free surface thin film placed on a thermally conductive substrate and exposed to an external heat source in a setup where the heat absorption depends on the local film thickness. Our focus is on modeling film evolution while the film is molten. The evolution of the film modifies local heat flow, which in turn may influence the film surface evolution through thermal variation of the films material properties. Thermal conductivity of the substrate plays an important role in determining the heat flow and the temperature field in the evolving film and in the substrate itself. In order to reach a tractable formulation, we use asymptotic analysis to develop a novel thermal model that is accurate, computationally efficient, and that accounts for the heat flow in both the in-plane and out-of plane directions. We apply this model to metal films of nanoscale thickness exposed to heating and melting by laser pulses, a setup commonly used for self and directed assembly of various metal geometries via dewetting while the films are in the liquid phase. We find that thermal effects play an important role, and in particular that the inclusion of temperature dependence in the metal viscosity modifies the time scale of the evolution significantly. On the other hand, in the considered setup the Marangoni (thermocapillary) effect turns out to be insignificant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا