ﻻ يوجد ملخص باللغة العربية
We present DES14X3taz, a new hydrogen-poor super luminous supernova (SLSN-I) discovered by the Dark Energy Survey (DES) supernova program, with additional photometric data provided by the Survey Using DECam for Superluminous Supernovae (SUDSS). Spectra obtained using OSIRIS on the Gran Telescopio CANARIAS (GTC) show DES14X3taz is a SLSN-I at z=0.608. Multi-color photometry reveals a double-peaked light curve: a blue and relatively bright initial peak that fades rapidly prior to the slower rise of the main light curve. Our multi-color photometry allows us, for the first time, to show that the initial peak cools from 22,000K to 8,000K over 15 rest-frame days, and is faster and brighter than any published core-collapse supernova, reaching 30% of the bolometric luminosity of the main peak. No physical Nickel powered model can fit this initial peak. We show that a shock-cooling model followed by a magnetar driving the second phase of the light curve can adequately explain the entire light curve of DES14X3taz. Models involving the shock-cooling of extended circumstellar material at a distance of ~400 solar radii are preferred over the cooling of shock-heated surface layers of a stellar envelope. We compare DES14X3taz to the few double-peaked SLSN-I events in the literature. Although the rise-times and characteristics of these initial peaks differ, there exists the tantalizing possibility that they can be explained by one physical interpretation.
We present observations of SN 2015bn (= PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift $z=0.1136$. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brigh
Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event
We present a simple and well defined prescription to compare absorption lines in supernova (SN) spectra with lists of transitions drawn from the National Institute of Standards and Technology (NIST) database. The method is designed to be applicable t
Only a few cases of type Ic supernovae (SNe) with high-velocity ejecta have been discovered and studied. Here we present our analysis of radio and X-ray observations of a Type Ic SN, PTF12gzk. The radio emission rapidly declined less than 10 days aft
SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the S