ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Simulations of a Shock-Filament Interaction

52   0   0.0 ( 0 )
 نشر من قبل Julian Pittard Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 3D hydrodynamic adiabatic simulations of a shock interacting with a dense, elongated cloud. We compare how the nature of the interaction changes with the filaments length and its orientation to the shock, and with the shock Mach number and the density contrast of the filament. We then examine the differences with respect to 3D spherical-cloud calculations. We find significant differences in the morphology of the interaction when M=10 and chi=100: in many cases 3 parallel rolls are formed, and spread further apart with time, and periodic vortex shedding can occur off the ends of oblique filaments. Sideways-on filaments are accelerated more quickly, and initially lose mass more quickly than spherical clouds due to their greater surface area to volume ratio. However, at late stages they lose mass more slowly, due to the reduced relative speed between the filament and the postshock flow. The acceleration and mixing timescales can vary by a factor of 2 as the filament orientation changes. Oblique filaments can achieve transverse velocities up to 10% of the shock speed. Some aspects of our simulations are compared against experimental and numerical work on rigid cylinders.

قيم البحث

اقرأ أيضاً

The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy d istributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculations needed to produce the whole broadband spectral energy distributions and light-curves are computationally expensive, and are achieved using a high-performance parallel code.
Observed HI accretion around nearby galaxies can only account for a fraction of the gas supply needed to sustain the currently observed star formation rates. It is possible that additional accretion happens in the form of low column density cold flow s, as predicted by numerical simulations of galaxy formation. To contrain the presence and properties of such flows, we present deep HI observations obtained with the NRAO Green Bank Telescope of an area measuring 4 by 4 degrees around NGC 2403. These observations, with a 5 sigma detection limit of 2.4 x 10^18 cm^-2 over a 20 km/s linewidth, reveal the presence of a low-column density, extended cloud outside the main HI disk, about 17 (~16 kpc or ~2R25) to the NW of the center of the galaxy. The total HI mass of the cloud is 6.3 x 10^6 Msun, or 0.15 percent of the total HI mass of NGC 2403. The cloud is associated with an 8-kpc anomalous-velocity HI filament in the inner disk, previously observed in deep VLA observations by Fraternali et al. (2001, 2002). We discuss several scenarios for the origin of the cloud, and conclude that it is either accreting from the intergalactic medium, or is the result of a minor interaction with a neigbouring dwarf galaxy.
73 - C.M. Fromm 2010
The radio light curve and spectral evolution of the blazar CTA 102 during its 2006 outburst can be rather well explained by the standard shock-in-jet model. The results of a pixel-to-pixel spectral analysis of multi-frequency VLBI images, together wi th kinematics derived from the MOJAVE survey lead to the picture of an over-pressured jet with respect to the ambient medium. The interaction of a traveling shock wave with a standing one is a possible scenario which could explain the observed spectral behaviour
Theoretically modelling the 21-cm signals caused by Population III stars (Pop III stars) is the key to extracting fruitful information on Pop III stars from current and forthcoming 21-cm observations. In this work we develop a new module of Pop III s tars in which the escape fractions of ionizing photons and Lyman-Werner (LW) photons, photo-heating by UV radiation, and LW feedback are consistently incorporated. By implementing the module into a public 21-cm semi-numerical simulation code, 21CMFAST, we demonstrate 21-cm signal calculations and investigate the importance of Pop III star modelling. What we find is that the contribution from Pop III stars to cosmic reionization significantly depends on the treatment of the escape fraction. With our escape fraction model, Pop III stars hardly contribute to reionization because less massive halos, whose escape fraction are high, cannot host Pop III stars due to LW feedback. On the other hand, Pop III stars well contribute to reionization with the conventional constant escape fraction. We also find that UV photo-heating has non-negligible impact on the 21-cm global signal and the 21-cm power spectrum if the ionization fraction of the Universe is higher than roughly 1 percent. In this case, the strength of the 21-cm global signal depends on the photo-heating efficiency and thus on the Pop III star mass. We conclude that detailed modelling of Pop III stars is imperative to predict 21-cm observables accurately for future observations.
We present a more accurate numerical scheme for the calculation of diffusive shock acceleration of cosmic rays using Stochastic Differential Equations. The accuracy of this scheme is demonstrated using a simple analytical flow profile that contains a shock of finite width and a varying diffusivity of the cosmic rays, where the diffusivity decreases across the shock. We compare the results for the slope of the momentum distribution with those obtained from a perturbation analysis valid for finite but small shock width. These calculations show that this scheme, although computationally more expensive, provides a significantly better performance than the Cauchy-Euler type schemes that were proposed earlier in the case where steep gradients in the cosmic ray diffusivity occur. For constant diffusivity the proposed scheme gives similar results as the Cauchy-Euler scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا