ﻻ يوجد ملخص باللغة العربية
Theoretically modelling the 21-cm signals caused by Population III stars (Pop III stars) is the key to extracting fruitful information on Pop III stars from current and forthcoming 21-cm observations. In this work we develop a new module of Pop III stars in which the escape fractions of ionizing photons and Lyman-Werner (LW) photons, photo-heating by UV radiation, and LW feedback are consistently incorporated. By implementing the module into a public 21-cm semi-numerical simulation code, 21CMFAST, we demonstrate 21-cm signal calculations and investigate the importance of Pop III star modelling. What we find is that the contribution from Pop III stars to cosmic reionization significantly depends on the treatment of the escape fraction. With our escape fraction model, Pop III stars hardly contribute to reionization because less massive halos, whose escape fraction are high, cannot host Pop III stars due to LW feedback. On the other hand, Pop III stars well contribute to reionization with the conventional constant escape fraction. We also find that UV photo-heating has non-negligible impact on the 21-cm global signal and the 21-cm power spectrum if the ionization fraction of the Universe is higher than roughly 1 percent. In this case, the strength of the 21-cm global signal depends on the photo-heating efficiency and thus on the Pop III star mass. We conclude that detailed modelling of Pop III stars is imperative to predict 21-cm observables accurately for future observations.
We present the results of the stellar feedback from Pop III binaries by employing improved, more realistic Pop III evolutionary stellar models. To facilitate a meaningful comparison, we consider a fixed mass of 60 solar masses (Msun) incorporated in
Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 Msun die as highly energetic pair-in
The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally
Ultraviolet and 21-cm observations suggest that the extremely low-metallicity galaxy, I Zw 18, is a stream-fed galaxy containing a pocket of pristine stars responsible for producing nebular He II recombination emission observed in I Zw18-NW. Far-UV s
The launch of the James Webb Space Telescope will open up a new window for observations at the highest redshifts, reaching out to z~15. However, even with this new facility, the first stars will remain out of reach, as they are born in small minihalo