ﻻ يوجد ملخص باللغة العربية
We report the first detection of a gap and a ring in 336 GHz dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array (ALMA). The gap and ring are located at around 25 and 41 au from the central star, respectively, and are associated with the CO snow line at ~30 au. The gap has a radial width of less than 15 au and a mass deficit of more than 23%, taking into account that the observations are limited to an angular resolution of ~15 au. In addition, the 13CO and C18O J = 3 - 2 lines show a decrement in CO line emission throughout the disk, down to ~10 au, indicating a freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. The observed gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2M_{Neptune}), or could be the result of the destruction of large dust aggregates due to the sintering of CO ice.
We present molecular line observations of 13CO and C18O J=3-2, CN N = 3 - 2, and CS J=7-6 lines in the protoplanetary disk around TW Hya at a high spatial resolution of ~9 au (angular resolution of 0.15), using the Atacama Large Millimeter/Submillime
We present an observational reconstruction of the radial water vapor content near the surface of the TW Hya transitional protoplanetary disk, and report the first localization of the snow line during this phase of disk evolution. The observations are
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of a protoplanetary disk around the T Tauri star Sz~84 and analyses of the structures of the inner cavity in the central region of the dust disk. Sz~84s spectral energy distr
We analyze high angular resolution ALMA observations of the TW Hya disk to place constraints on the CO and dust properties. We present new, sensitive observations of the $^{12}$CO $J = 3-2$ line at a spatial resolution of 8 AU (0farcs14). The CO emis
We report the detection of an excess in dust continuum emission at 233~GHz (1.3~mm in wavelength) in the protoplanetary disk around TW~Hya revealed through high-sensitivity observations at $sim$3~au resolution with the Atacama Large Millimeter/submil