ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA Observations of the Inner Cavity in the Protoplanetary Disk around Sz 84

113   0   0.0 ( 0 )
 نشر من قبل Jun Hashimoto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of a protoplanetary disk around the T Tauri star Sz~84 and analyses of the structures of the inner cavity in the central region of the dust disk. Sz~84s spectral energy distribution (SED) has been known to exhibit negligible infrared excess at $lambda lesssim$10~$mu$m due to the disks cavity structure. Analyses of the observed visibilities of dust continuum at 1.3~mm and the SED indicate that the size of the cavity in the disk of large (millimeter size) dust grains is 8~au in radius and that in the disk of small (sub-micron size) dust grains is 60~au in radius. Furthermore, from the SED analyses, we estimate that the upper limit mass of small dust grains at $r<$60~au is less than $sim$10$^{-3}$~$M_{rm earth}$, which is $lesssim$0.01~% of the total (small~$+$~large) dust mass at $r<$60~au. These results suggest that large dust grains are dominant at $r<$60~au, implying that dust grains efficiently grow with less efficient fragmentation in this region, potentially due to weak turbulence and/or stickier dust grains. The balance of grain growth and dust fragmentation is an important factor for determining the size of large dust grains in protoplanetary disks, and thus Sz~84 could serve as a good testbed for investigations of grain growth in such disks.

قيم البحث

اقرأ أيضاً

The protoplanetary disk around the T Tauri star GM Aur was one of the first hypothesized to be in the midst of being cleared out by a forming planet. As a result, GM Aur has had an outsized influence on our understanding of disk structure and evoluti on. We present 1.1 and 2.1 mm ALMA continuum observations of the GM Aur disk at a resolution of ~50 mas (~8 au), as well as HCO$^+$ $J=3-2$ observations at a resolution of ~100 mas. The dust continuum shows at least three rings atop faint, extended emission. Unresolved emission is detected at the center of the disk cavity at both wavelengths, likely due to a combination of dust and free-free emission. Compared to the 1.1 mm image, the 2.1 mm image shows a more pronounced shoulder near R~40 au, highlighting the utility of longer-wavelength observations for characterizing disk substructures. The spectral index $alpha$ features strong radial variations, with minima near the emission peaks and maxima near the gaps. While low spectral indices have often been ascribed to grain growth and dust trapping, the optical depth of GM Aurs inner two emission rings renders their dust properties ambiguous. The gaps and outer disk ($R>100$ au) are optically thin at both wavelengths. Meanwhile, the HCO$^+$ emission indicates that the gas cavity is more compact than the dust cavity traced by the millimeter continuum, similar to other disks traditionally classified as transitional.
We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations for three protoplanetary disks in Taurus at 2.9,mm and comparisons with previous 1.3,mm data both at an angular resolution of $sim0.1$ (15,au for the distance of Taurus). In the single-ring disk DS Tau, double-ring disk GO Tau, and multiple-ring disk DL Tau, the same rings are detected at both wavelengths, with radial locations spanning from 50 to 120,au. To quantify the dust emission morphology, the observed visibilities are modeled with a parametric prescription for the radial intensity profile. The disk outer radii, taken as 95% of the total flux encircled in the model intensity profiles, are consistent at both wavelengths for the three disks. Dust evolution models show that dust trapping in local pressure maxima in the outer disk could explain the observed patterns. Dust rings are mostly unresolved. The marginally resolved ring in DS Tau shows a tentatively narrower ring at the longer wavelength, an observational feature expected from efficient dust trapping. The spectral index ($alpha_{rm mm}$) increases outward and exhibits local minima that correspond to the peaks of dust rings, indicative of the changes in grain properties across the disks. The low optical depths ($tausim$0.1--0.2 at 2.9,mm and 0.2--0.4 at 1.3,mm) in the dust rings suggest that grains in the rings may have grown to millimeter sizes. The ubiquitous dust rings in protoplanetary disks modify the overall dynamics and evolution of dust grains, likely paving the way towards the new generation of planet formation.
The combination of high resolution and sensitivity offered by ALMA is revolutionizing our understanding of protoplanetary discs, as their bulk gas and dust distributions can be studied independently. In this paper we present resolved ALMA observation s of the continuum emission ($lambda=1.3$ mm) and CO isotopologues ($^{12}$CO, $^{13}$CO, C$^{18}$O $J=2-1$) integrated intensity from the disc around the nearby ($d = 162$ pc), intermediate mass ($M_{star}=1.67,M_{odot}$) pre-main-sequence star CQ Tau. The data show an inner depression in continuum, and in both $^{13}$CO and C$^{18}$O emission. We employ a thermo-chemical model of the disc reproducing both continuum and gas radial intensity profiles, together with the disc SED. The models show that a gas inner cavity with size between 15 and 25 au is needed to reproduce the data with a density depletion factor between $sim 10^{-1}$ and $sim 10^{-3}$. The radial profile of the distinct cavity in the dust continuum is described by a Gaussian ring centered at $R_{rm dust}=53,$au and with a width of $sigma=13,$au. Three dimensional gas and dust numerical simulations of a disc with an embedded planet at a separation from the central star of $sim20,$au and with a mass of $sim 6textrm{-} 9,M_{rm Jup}$ reproduce qualitatively the gas and dust profiles of the CQ Tau disc. However, a one planet model appears not to be able to reproduce the dust Gaussian density profile predicted using the thermo-chemical modeling.
We present Atacama Large Millimeter Array CO(3$-$2) and HCO$^+$(4$-$3) observations covering the central $1rlap{.}5$$times$$1rlap{.}5$ region of the Orion Nebula Cluster (ONC). The unprecedented level of sensitivity ($sim$0.1 mJy beam$^{-1}$) and ang ular resolution ($sim$$0rlap{.}09 approx 35$ AU) of these line observations enable us to search for gas-disk detections towards the known positions of submillimeter-detected dust disks in this region. We detect 23 disks in gas: 17 in CO(3$-$2), 17 in HCO$^+$(4$-$3), and 11 in both lines. Depending on where the sources are located in the ONC, we see the line detections in emission, in absorption against the warm background, or in both emission and absorption. We spectrally resolve the gas with $0.5$ km s$^{-1}$ channels, and find that the kinematics of most sources are consistent with Keplerian rotation. We measure the distribution of gas-disk sizes and find typical radii of $sim$50-200 AU. As such, gas disks in the ONC are compact in comparison with the gas disks seen in low-density star-forming regions. Gas sizes are universally larger than the dust sizes. However, the gas and dust sizes are not strongly correlated. We find a positive correlation between gas size and distance from the massive star $theta^1$ Ori C, indicating that disks in the ONC are influenced by photoionization. Finally, we use the observed kinematics of the detected gas lines to model Keplerian rotation and infer the masses of the central pre-main-sequence stars. Our dynamically-derived stellar masses are not consistent with the spectroscopically-derived masses, and we discuss possible reasons for this discrepancy.
The protoplanetary disk around Ophiuchus IRS 48 shows an azimuthally asymmetric dust distribution in (sub-)millimeter observations, which is interpreted as a vortex, where millimeter/centimeter-sized particles are trapped at the location of the conti nuum peak. In this paper, we present 860 $mu$m ALMA observations of polarized dust emission of this disk. The polarized emission was detected toward a part of the disk. The polarization vectors are parallel to the disk minor axis, and the polarization fraction was derived to be $1-2$%. These characteristics are consistent with models of self-scattering of submillimeter-wave emission, which indicate a maximum grain size of $sim100$ $mu$m. However, this is inconsistent with the previous interpretation of millimeter/centimeter dust particles being trapped by a vortex. To explain both, ALMA polarization and previous ALMA and VLA observations, we suggest that the thermal emission at 860 $mu$m wavelength is optically thick ($tau_{rm abs}sim7.3$) at the dust trap with the maximum observable grain size of $sim100$ $mu$m rather than an optically thin case with $sim$ cm dust grains. We note that we cannot rule out that larger dust grains are accumulated near the midplane if the 860 $mu$m thermal emission is optically thick.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا