ﻻ يوجد ملخص باللغة العربية
We present a study of the generalized second law of thermodynamics in the scope of the f(R,T) theory of gravity, with R and T representing the Ricci scalar and trace of the energy-momentum tensor, respectively. From the energy-momentum tensor equation for the f(R,T) = R + f(T) case, we calculate the form of the geometric entropy in such a theory. Then, the generalized second law of thermodynamics is quantified and some relations for its obedience in f(R,T) gravity are presented. Those relations depend on some cosmological quantities, as the Hubble and deceleration parameters, and on the form of f(T).
Here, we investigate the growth of matter density perturbations as well as the generalized second law (GSL) of thermodynamics in the framework of $f(R)$-gravity. We consider a spatially flat FRW universe filled with the pressureless matter and radiat
Within the context of scalar-tensor gravity, we explore the generalized second law (GSL) of gravitational thermodynamics. We extend the action of ordinary scalar-tensor gravity theory to the case in which there is a non-minimal coupling between the s
Currently, in order to explain the accelerated expansion phase of the universe, several alternative approaches have been proposed, among which the most common are dark energy models and alternative theories of gravity. Although these approaches rest
There is a host of alternative theories of gravitation in the literature, among them the $f(R,T)$ recently elaborated by Harko and collaborators. In these theories the $R$ and $T$ are respectively the Ricci scalar and the trace of the energy momentum
Wormholes are a solution for General Relativity field equations which characterize a passage or a tunnel that connects two different regions of space-time and is filled by some sort of exotic matter, that does not satisfy the energy conditions. On th