ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation of Pose Tracking Accuracy in the First and Second Generations of Microsoft Kinect

314   0   0.0 ( 0 )
 نشر من قبل Qifei Wang
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Microsoft Kinect camera and its skeletal tracking capabilities have been embraced by many researchers and commercial developers in various applications of real-time human movement analysis. In this paper, we evaluate the accuracy of the human kinematic motion data in the first and second generation of the Kinect system, and compare the results with an optical motion capture system. We collected motion data in 12 exercises for 10 different subjects and from three different viewpoints. We report on the accuracy of the joint localization and bone length estimation of Kinect skeletons in comparison to the motion capture. We also analyze the distribution of the joint localization offsets by fitting a mixture of Gaussian and uniform distribution models to determine the outliers in the Kinect motion data. Our analysis shows that overall Kinect 2 has more robust and more accurate tracking of human pose as compared to Kinect 1.



قيم البحث

اقرأ أيضاً

This paper summarizes the recent progress we have made for the computer vision technologies in physical therapy with the accessible and affordable devices. We first introduce the remote health coaching system we build with Microsoft Kinect. Since the motion data captured by Kinect is noisy, we investigate the data accuracy of Kinect with respect to the high accuracy motion capture system. We also propose an outlier data removal algorithm based on the data distribution. In order to generate the kinematic parameter from the noisy data captured by Kinect, we propose a kinematic filtering algorithm based on Unscented Kalman Filter and the kinematic model of human skeleton. The proposed algorithm can obtain smooth kinematic parameter with reduced noise compared to the kinematic parameter generated from the raw motion data from Kinect.
Multi-person articulated pose tracking in unconstrained videos is an important while challenging problem. In this paper, going along the road of top-down approaches, we propose a decent and efficient pose tracker based on pose flows. First, we design an online optimization framework to build the association of cross-frame poses and form pose flows (PF-Builder). Second, a novel pose flow non-maximum suppression (PF-NMS) is designed to robustly reduce redundant pose flows and re-link temporal disjoint ones. Extensive experiments show that our method significantly outperforms best-reported results on two standard Pose Tracking datasets by 13 mAP 25 MOTA and 6 mAP 3 MOTA respectively. Moreover, in the case of working on detected poses in individual frames, the extra computation of pose tracker is very minor, guaranteeing online 10FPS tracking. Our source codes are made publicly available(https://github.com/YuliangXiu/PoseFlow).
68 - Amir Shalev 2020
We consider the problem of relative pose regression in visual relocalization. Recently, several promising approaches have emerged in this area. We claim that even though they demonstrate on the same datasets using the same split to train and test, a faithful comparison between them was not available since on currently used evaluation metric, some approaches might perform favorably, while in reality performing worse. We reveal a tradeoff between accuracy and the 3D volume of the regressed subspace. We believe that unlike other relocalization approaches, in the case of relative pose regression, the regressed subspace 3D volume is less dependent on the scene and more affect by the method used to score the overlap, which determined how closely sampled viewpoints are. We propose three new metrics to remedy the issue mentioned above. The proposed metrics incorporate statistics about the regression subspace volume. We also propose a new pose regression network that serves as a new baseline for this task. We compare the performance of our trained model on Microsoft 7-Scenes and Cambridge Landmarks datasets both with the standard metrics and the newly proposed metrics and adjust the overlap score to reveal the tradeoff between the subspace and performance. The results show that the proposed metrics are more robust to different overlap threshold than the conventional approaches. Finally, we show that our network generalizes well, specifically, training on a single scene leads to little loss of performance on the other scenes.
We present the first evidence of multiple populations in the Galactic globular cluster NGC 6362. We used optical and near-UV Hubble Space Telescope and ground based photometry, finding that both the sub giant and red giant branches are split in two p arallel sequences in all color magnitude diagrams where the F336W filter (or U band) is used. This cluster is one of the least massive globulars (M_tot~5x10^4 M_sun) where multiple populations have been detected so far. Even more interestingly and at odds with any previous finding, we observe that the two identified populations share the same radial distribution all over the cluster extension. NGC 6362 is the first system where stars from different populations are found to be completely spatially mixed. Based on N-body and hydrodynamical simulations of multiple stellar generations, we argue that, to reproduce these findings, NGC 6362 should have lost up to the 80% of its original mass
In this work, we introduce the challenging problem of joint multi-person pose estimation and tracking of an unknown number of persons in unconstrained videos. Existing methods for multi-person pose estimation in images cannot be applied directly to t his problem, since it also requires to solve the problem of person association over time in addition to the pose estimation for each person. We therefore propose a novel method that jointly models multi-person pose estimation and tracking in a single formulation. To this end, we represent body joint detections in a video by a spatio-temporal graph and solve an integer linear program to partition the graph into sub-graphs that correspond to plausible body pose trajectories for each person. The proposed approach implicitly handles occlusion and truncation of persons. Since the problem has not been addressed quantitatively in the literature, we introduce a challenging Multi-Person PoseTrack dataset, and also propose a completely unconstrained evaluation protocol that does not make any assumptions about the scale, size, location or the number of persons. Finally, we evaluate the proposed approach and several baseline methods on our new dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا