ترغب بنشر مسار تعليمي؟ اضغط هنا

Big Data Scaling through Metric Mapping: Exploiting the Remarkable Simplicity of Very High Dimensional Spaces using Correspondence Analysis

369   0   0.0 ( 0 )
 نشر من قبل Fionn Murtagh
 تاريخ النشر 2015
والبحث باللغة English
 تأليف Fionn Murtagh




اسأل ChatGPT حول البحث

We present new findings in regard to data analysis in very high dimensional spaces. We use dimensionalities up to around one million. A particular benefit of Correspondence Analysis is its suitability for carrying out an orthonormal mapping, or scaling, of power law distributed data. Power law distributed data are found in many domains. Correspondence factor analysis provides a latent semantic or principal axes mapping. Our experiments use data from digital chemistry and finance, and other statistically generated data.



قيم البحث

اقرأ أيضاً

119 - Fionn Murtagh 2008
An ultrametric topology formalizes the notion of hierarchical structure. An ultrametric embedding, referred to here as ultrametricity, is implied by a hierarchical embedding. Such hierarchical structure can be global in the data set, or local. By qua ntifying extent or degree of ultrametricity in a data set, we show that ultrametricity becomes pervasive as dimensionality and/or spatial sparsity increases. This leads us to assert that very high dimensional data are of simple structure. We exemplify this finding through a range of simulated data cases. We discuss also application to very high frequency time series segmentation and modeling.
We introduce a new method of performing high dimensional discriminant analysis, which we call multiDA. We achieve this by constructing a hybrid model that seamlessly integrates a multiclass diagonal discriminant analysis model and feature selection c omponents. Our feature selection component naturally simplifies to weights which are simple functions of likelihood ratio statistics allowing natural comparisons with traditional hypothesis testing methods. We provide heuristic arguments suggesting desirable asymptotic properties of our algorithm with regards to feature selection. We compare our method with several other approaches, showing marked improvements in regard to prediction accuracy, interpretability of chosen features, and algorithm run time. We demonstrate such strengths of our model by showing strong classification performance on publicly available high dimensional datasets, as well as through multiple simulation studies. We make an R package available implementing our approach.
We study two practically important cases of model based clustering using Gaussian Mixture Models: (1) when there is misspecification and (2) on high dimensional data, in the light of recent advances in Gradient Descent (GD) based optimization using A utomatic Differentiation (AD). Our simulation studies show that EM has better clustering performance, measured by Adjusted Rand Index, compared to GD in cases of misspecification, whereas on high dimensional data GD outperforms EM. We observe that both with EM and GD there are many solutions with high likelihood but poor cluster interpretation. To address this problem we design a new penalty term for the likelihood based on the Kullback Leibler divergence between pairs of fitted components. Closed form expressions for the gradients of this penalized likelihood are difficult to derive but AD can be done effortlessly, illustrating the advantage of AD-based optimization. Extensions of this penalty for high dimensional data and for model selection are discussed. Numerical experiments on synthetic and real datasets demonstrate the efficacy of clustering using the proposed penalized likelihood approach.
Big Data is one of the major challenges of statistical science and has numerous consequences from algorithmic and theoretical viewpoints. Big Data always involve massive data but they also often include online data and data heterogeneity. Recently so me statistical methods have been adapted to process Big Data, like linear regression models, clustering methods and bootstrapping schemes. Based on decision trees combined with aggregation and bootstrap ideas, random forests were introduced by Breiman in 2001. They are a powerful nonparametric statistical method allowing to consider in a single and versatile framework regression problems, as well as two-class and multi-class classification problems. Focusing on classification problems, this paper proposes a selective review of available proposals that deal with scaling random forests to Big Data problems. These proposals rely on parallel environments or on online adaptations of random forests. We also describe how related quantities -- such as out-of-bag error and variable importance -- are addressed in these methods. Then, we formulate various remarks for random forests in the Big Data context. Finally, we experiment five variants on two massive datasets (15 and 120 millions of observations), a simulated one as well as real world data. One variant relies on subsampling while three others are related to parallel implementations of random forests and involve either various adaptations of bootstrap to Big Data or to divide-and-conquer approaches. The fifth variant relates on online learning of random forests. These numerical experiments lead to highlight the relative performance of the different variants, as well as some of their limitations.
We describe a new library named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (e.g., sparse linear regression, sparse logistic regression, sparse Poisson regression and sca led sparse linear regression) combined with efficient active set selection strategies. Besides, the library allows users to choose different sparsity-inducing regularizers, including the convex $ell_1$, nonconvex MCP and SCAD regularizers. The library is coded in C++ and has user-friendly R and Python wrappers. Numerical experiments demonstrate that picasso can scale up to large problems efficiently.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا