ﻻ يوجد ملخص باللغة العربية
Given a finite group with a generating subset there is a well-established notion of length for a group element given in terms of its minimal length expression as a product of elements from the generating set. Recently, certain quantities called $lambda_{1}$ and $lambda_{2}$ have been defined that allow for a precise measure of how stable a group is under certain types of small perturbations in the generating expressions for the elements of the group. These quantities provide a means to measure differences among all possible paths in a Cayley graph for a group, establish a group theoretic analog for the notion of stability in nonlinear dynamical systems, and play an important role in the application of groups to computational genomics. In this paper, we further expose the fundamental properties of $lambda_{1}$ and $lambda_{2}$ by establishing their bounds when the underlying group is a dihedral group. An essential step in our approach is to completely characterize so-called symmetric presentations of the dihedral groups, providing insight into the manner in which $lambda_{1}$ and $lambda_{2}$ interact with finite group presentations. This is of interest independent of the study of the quantities $lambda_{1},; lambda_{2}$. Finally, we discuss several conjectures and open questions for future consideration.
A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=ab^{-1}$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference
We introduce a new method for computing the word length of an element of Thompsons group F with respect to a consecutive generating set of the form X_n={x_0,x_1,...,x_n}, which is a subset of the standard infinite generating set for F. We use this me
In this paper, we find a strong new restriction on the structure of CI-groups. We show that, if $R$ is a generalised dihedral group and if $R$ is a CI-group, then for every odd prime $p$ the Sylow $p$-subgroup of $R$ has order $p$, or $9$. Consequent
A Cayley (di)graph $Cay(G,S)$ of a group $G$ with respect to $S$ is said to be normal if the right regular representation of $G$ is normal in the automorphism group of $Cay(G,S)$, and is called a CI-(di)graph if there is $alphain Aut(G)$ such that $S
We study an impartial game introduced by Anderson and Harary. This game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements