ﻻ يوجد ملخص باللغة العربية
I calculate the mixed threetangle $tau_3[rho]$ for the reduced density matrices of the four-qubit representant states found in Phys. Rev. A {bf 65}, 052112 (2002). In most of the cases, the convex roof is obtained, except for one class, where I provide with a new upper bound, which is assumed to be very close to the convex roof. I compare with results published in Phys. Rev. Lett. {bf 113}, 110501 (2014). Since the method applied there usually results in higher values for the upper bound, in certain cases it can be understood that the convex roof is obtained exactly, namely when the zero-polytope where $tau_3$ vanishes shrinks to a single point.
We examine the various properties of the three four-qubit monogamy relations, all of which introduce the power factors in the three-way entanglement to reduce the tripartite contributions. On the analytic ground as much as possible we try to find the
We single out a class of states possessing only threetangle but distributed all over four qubits. This is a three-site analogue of states from the $W$-class, which only possess globally distributed pairwise entanglement as measured by the concurrence
Many-qubit entanglement is crucial for quantum information processing although its exploitation is hindered by the detrimental effects of the environment surrounding the many-qubit system. It is thus of importance to study the dynamics of general mul
In Phys. Rev. A 62, 062314 (2000), D{u}r, Vidal and Cirac indicated that there are infinitely many SLOCC classes for four qubits. Verstraete, Dehaene, and Verschelde in Phys. Rev. A 65, 052112 (2002) proposed nine families of states corresponding to
We study the relation between qubit entanglement and Lorentzian geometry. In an earlier paper, we had given a recipe for detecting two qubit entanglement. The entanglement criterion is based on Partial Lorentz Transformations (PLT) on individual qubi