ﻻ يوجد ملخص باللغة العربية
We study the relation between qubit entanglement and Lorentzian geometry. In an earlier paper, we had given a recipe for detecting two qubit entanglement. The entanglement criterion is based on Partial Lorentz Transformations (PLT) on individual qubits. The present paper gives the theoretical framework underlying the PLT test. The treatment is based physically, on the causal structure of Minkowski spacetime, and mathematically, on a Lorentzian Singular Value Decomposition. A surprising feature is the natural emergence of Energy conditions used in Relativity. All states satisfy a Dominant Energy Condition (DEC) and separable states satisfy the Strong Energy Condition(SEC), while entangled states violate the SEC. Apart from testing for entanglement, our approach also enables us to construct a separable form for the density matrix in those cases where it exists. Our approach leads to a simple graphical three dimensional representation of the state space which shows the entangled states within the set of all states.
Geometric quantum mechanics aims to express the physical properties of quantum systems in terms of geometrical features preferentially selected in the space of pure states. Geometric characterisations are given here for systems of one, two, and three
We investigate the monogamy relations related to the concurrence and the entanglement of formation. General monogamy inequalities given by the {alpha}th power of concurrence and entanglement of formation are presented for N-qubit states. The monogamy
Two qubits in pure entangled states going through separate paths and interacting with their own individual environments will gradually lose their entanglement. Here we show that the entanglement change of a two-qubit state due to amplitude damping no
We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its $k$-secant
The entanglement witness is an important and experimentally applicable tool for entanglement detection. In this paper, we provide a nonlinear improvement of any entanglement witness for $2otimes d$ quantum systems. Compared with any existing entangle