ﻻ يوجد ملخص باللغة العربية
In this article we prove existence of the asymptotic entropy for isotropic random walks on regular Fuchsian buildings. Moreover, we give formulae for the asymptotic entropy, and prove that it is equal to the rate of escape of the random walk with respect to the Green distance. When the building arises from a Fuchsian Kac-Moody group our results imply results for random walks induced by bi-invariant measures on these groups, however our results are proven in the general setting without the assumption of any group acting on the building. The main idea is to consider the retraction of the isotropic random walk onto an apartment of the building, to prove existence of the asymptotic entropy for this retracted walk, and to `lift this in order to deduce the existence of the entropy for the random walk on the building.
Given an irreducible non-spherical non-affine (possibly non-proper) building $X$, we give sufficient conditions for a group $G < Aut(X)$ to admit an infinite-dimensional space of non-trivial quasi-morphisms. The result applies to all irreducible (non
Random walks on a group $G$ model many natural phenomena. A random walk is defined by a probability measure $p$ on $G$. We are interested in asymptotic properties of the random walks and in particular in the linear drift and the asymptotic entropy. I
We study the asymptotic behaviour of random walks on topological abelian groups $G$. Our main result is a sufficient condition for one random walk to overtake another in the stochastic order induced by any suitably large positive cone $G_+ subseteq G
We prove existence of asymptotic entropy of random walks on regular languages over a finite alphabet and we give formulas for it. Furthermore, we show that the entropy varies real-analytically in terms of probability measures of constant support, whi
This is a summary (in French) of my work about brownian motion and Kac-Moody algebras during the last seven years, presented towards the Habilitation degree.