ترغب بنشر مسار تعليمي؟ اضغط هنا

A group theoretical approach to structural transitions of icosahedral quasicrystals and point arrays

74   0   0.0 ( 0 )
 نشر من قبل Emilio Zappa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we describe a group theoretical approach to the study of structural transitions of icosahedral quasicrystals and point arrays. We apply the concept of Schur rotations, originally proposed by Kramer, to the case of aperiodic structures with icosahedral symmetry; these rotations induce a rotation of the physical and orthogonal spaces invariant under the icosahedral group, and hence, via the cut-and-project method, a continuous transformation of the corresponding model sets. We prove that this approach allows for a characterisation of such transitions in a purely group theoretical framework, and provide explicit computations and specific examples. Moreover, we prove that this approach can be used in the case of finite point sets with icosahedral symmetry, which have a wide range of applications in carbon chemistry (fullerenes) and biology (viral capsids).



قيم البحث

اقرأ أيضاً

We utilize group-theoretical methods to develop a matrix representation of differential operators that act on tensors of any rank. In particular, we concentrate on the matrix formulation of the curl operator. A self-adjoint matrix of the curl operato r is constructed and its action is extended to a complex plane. This scheme allows us to obtain properties, similar to those of the traditional curl operator.
128 - Paolo Aniello 2009
Adopting a purely group-theoretical point of view, we consider the star product of functions which is associated, in a natural way, with a square integrable (in general, projective) representation of a locally compact group. Next, we show that for th is (implicitly defined) star product explicit formulae can be provided. Two significant examples are studied in detail: the group of translations on phase space and the one-dimensional affine group. The study of the first example leads to the Groenewold-Moyal star product. In the second example, the link with wavelet analysis is clarified.
Optical reflectivity as a simple diagnostic method for testing structural quality of icosahedral quasicrystals 2 The optical reflectivity of Al-based and Ti-based quasicrystalline and approximant samples were investigated versus the quality of their structural morphology using optical reflectometry, X-ray diffraction and transmission electron microscopy. The different structural morphologies were obtained using three different preparation processes : sintering, pulsed laser deposition and reactive cathodic magnetron sputtering. The work demonstrates that the canonical behaviour of icosahedral state in specular reflectivity is extremely sensitive to different and very fine aspects of the microstructure : sizes of grains smaller than 50 nm, slight local diffuse disorder and shifts away from the icosahedral crystallographic structure (approximants). The work explains why the optical properties of the same kind of quasicrystals found in literature sometimes reveal a different behaviour from one author to another. The study then confirms the work of some authors and definitely shows that the canonical behaviour of icosahedral state in specular reflectivity over the 30000-50000 cm-1 domain is characterized by a decreasing function made of steps. It also shows that this behaviour can be interpreted thanks to the cluster hierarchy of the model of Janot.
In this paper, the tiling of the Euclidean plane with regular hexagons whose vertices are occupied by carbon atoms is called the graphene. We describe six different ways to generate the graphene by the means of group theory. There are two ways starti ng from the triangular lattice of Lie algebra $A_2$ and $G_2$, and one way for each of the Lie algebras $B_3$, $C_3$ and $A_3$, by projecting the weight system of their lowest representation to the hexagons of $A_2$. Colouring of the graphene is presented. Changing from one colouring to another is called phase transition. Multistep refinements of the graphene are described.
145 - F. Rosch 2007
Ebert et al. [Phys. Rev. Lett. 77, 3827 (1996)] have fractured icosahedral Al-Mn-Pd single crystals in ultrahigh vacuum and have investigated the cleavage planes in-situ by scanning tunneling microscopy (STM). Globular patterns in the STM-images were interpreted as clusters of atoms. These are significant structural units of quasicrystals. The experiments of Ebert et al. imply that they are also stable physical entities, a property controversially discussed currently. For a clarification we performed the first large scale fracture simulations on three-dimensional complex binary systems. We studied the propagation of mode I cracks in an icosahedral model quasicrystal by molecular dynamics techniques at low temperature. In particular we examined how the shape of the cleavage plane is influenced by the clusters inherent in the model and how it depends on the plane structure. Brittle fracture with no indication of dislocation activity is observed. The crack surfaces are rough on the scale of the clusters, but exhibit constant average heights for orientations perpendicular to high symmetry axes. From detailed analyses of the fractured samples we conclude that both, the plane structure and the clusters, strongly influence dynamic fracture in quasicrystals and that the clusters therefore have to be regarded as physical entities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا