ﻻ يوجد ملخص باللغة العربية
The authors report on the design and measurement of a reflective single-pole single-throw microwave switch with no internal power dissipation, based on a superconducting circuit containing a single Josephson junction. The data demonstrate the switch operation with 2 GHz instantaneous bandwidth centered at 10 GHz, low insertion loss, and better than 20 dB on/off ratio. The switchs measured performance agrees well with simulations for input powers up to -100 dBm. An extension of the demonstrated circuit to implement a single-pole double-throw switch is shown in simulation.
We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz, and integrate these components to implement both a monolithic amplitude/phase vector modulator and a quadrature mixer. The devices are act
We develop an analytic theory for the recently demonstrated Josephson Junction laser (Science 355, p. 939, 2017). By working in the time-domain representation (rather than the frequency-domain) a single non-linear equation is obtained for the dynamic
We present an experimental investigation of stochastic switching of a bistable Josephson junctions array resonator with a resonance frequency in the GHz range. As the device is in the regime where the anharmonicity is on the order of the linewidth, t
Preliminary results are presented concerning static properties of a small Josephson junction under the influence of strong microwave radiation. We discuss the correspondence between a Brownian particle moving in a periodic potential and superconducti
We have constructed a microwave detector based on the voltage switching of an underdamped Josephson junction, that is positioned at a current antinode of a {lambda}/4 coplanar waveguide resonator. By measuring the switching current and the transmissi