ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of strong microwave radiation on static properties of a small Josephson junction

537   0   0.0 ( 0 )
 نشر من قبل Marek Jaworski
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Preliminary results are presented concerning static properties of a small Josephson junction under the influence of strong microwave radiation. We discuss the correspondence between a Brownian particle moving in a periodic potential and superconducting phase difference in a small Josephson junction. Next, we describe an experimental method of determining the amplitude of microwave current flowing across the junction. Typical examples of static characteristics of the junction are presented, including its dynamical resistance as a function of microwave power. We discuss also the influence of an external magnetic field on the junction dynamics and show that in this case the one-dimensional Stewart-McCumber model becomes insufficient.



قيم البحث

اقرأ أيضاً

The authors report on the design and measurement of a reflective single-pole single-throw microwave switch with no internal power dissipation, based on a superconducting circuit containing a single Josephson junction. The data demonstrate the switch operation with 2 GHz instantaneous bandwidth centered at 10 GHz, low insertion loss, and better than 20 dB on/off ratio. The switchs measured performance agrees well with simulations for input powers up to -100 dBm. An extension of the demonstrated circuit to implement a single-pole double-throw switch is shown in simulation.
We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz, and integrate these components to implement both a monolithic amplitude/phase vector modulator and a quadrature mixer. The devices are act uated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.
We investigate the Josephson radiation emitted by a junction made of a quantum dot coupled to two conventional superconductors. Close to resonance, the particle-hole symmetric Andreev states that form in the junction are detached from the continuum a bove the superconducting gap in the leads, while a gap between them opens near the Fermi level. Under voltage bias, we formulate a stochastic model that accounts for non-adiabatic processes, which change the occupations of the Andreev states. This model allows calculating the current noise spectrum and determining the Fano factor. Analyzing the finite-frequency noise, we find that the model may exhibit either an integer or a fractional AC Josephson effect, depending on the bias voltage and the size of the gaps in the Andreev spectrum. Our results assess the limitations in using the fractional Josephson radiation as a probe of topology.
168 - H. F. Yu , X. B. Zhu , Z. H. Peng 2011
Quantum phase diffusion in a small underdamped Nb/AlO$_x$/Nb junction ($sim$ 0.4 $mu$m$^2$) is demonstrated in a wide temperature range of 25-140 mK where macroscopic quantum tunneling (MQT) is the dominant escape mechanism. We propose a two-step tra nsition model to describe the switching process in which the escape rate out of the potential well and the transition rate from phase diffusion to the running state are considered. The transition rate extracted from the experimental switching current distribution follows the predicted Arrhenius law in the thermal regime but is greatly enhanced when MQT becomes dominant.
We have constructed a microwave detector based on the voltage switching of an underdamped Josephson junction, that is positioned at a current antinode of a {lambda}/4 coplanar waveguide resonator. By measuring the switching current and the transmissi on through a waveguide capacitively coupled to the resonator at different drive frequencies and temperatures we are able to fully characterize the system and assess its detection efficiency and sensitivity. Testing the detector by applying a classical microwave field with the strength of a single photon yielded a sensitivity parameter of 0.5 in qualitative agreement with theoretical calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا