ترغب بنشر مسار تعليمي؟ اضغط هنا

Extra-large crystal emulsion detectors for future large-scale experiments

48   0   0.0 ( 0 )
 نشر من قبل Tomoko Ariga
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photographic emulsion is a particle tracking device which features the best spatial resolution among particle detectors. For certain applications, for example muon radiography, large-scale detectors are required. Therefore, a huge surface has to be analyzed by means of automated optical microscopes. An improvement of the readout speed is then a crucial point to make these applications possible and the availability of a new type of photographic emulsions featuring crystals of larger size is a way to pursue this program. This would allow a lower magnification for the microscopes, a consequent larger field of view resulting in a faster data analysis. In this framework, we developed new kinds of emulsion detectors with a crystal size of 600-1000 nm, namely 3-5 times larger than conventional ones, allowing a 25 times faster data readout. The new photographic emulsions have shown a sufficient sensitivity and a good signal to noise ratio. The proposed development opens the way to future large-scale applications of the technology, e.g. 3D imaging of glacier bedrocks or future neutrino experiments.

قيم البحث

اقرأ أيضاً

MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water-Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches and the detection of neutrinos from supernovae, solar, and atmospheric neutrinos, as well as neutrinos from a future beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. This paper provides an overview of the latest studies on the expected performance of MEMPHYS in view of detailed estimates of its physics reach, mainly concerning neutrino beams.
Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $pm$ 0.03 for Carbostyril-124, and 1.20 $pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.
Gadolinium-loading of large water Cherenkov detectors is a prime method for the detection of the Diffuse Supernova Neutrino Background (DSNB). While the enhanced neutron tagging capability greatly reduces single-event backgrounds, correlated events m imicking the IBD coincidence signature remain a potentially harmful background. Neutral-Current (NC) interactions of atmospheric neutrinos potentially dominate the DSNB signal especially in the low-energy range of the observation window that reaches from about 12 to 30 MeV. The present paper investigates a novel method for the discrimination of this background. Convolutional Neural Networks (CNNs) offer the possibility for a direct analysis and classification of the PMT hit patterns of the prompt events. Based on the events generated in a simplified SuperKamiokande-like detector setup, we find that a trained CNN can maintain a signal efficiency of 96 % while reducing the residual NC background to 2 % of the original rate. Comparing to recent predictions of the DSNB signal and measurements of the NC background levels in Super-Kamiokande, the corresponding signal-to-background ratio is about 4:1, providing excellent conditions for a DSNB discovery.
39 - P. Nelson , N. S. Bowden 2011
A detector material or configuration that can provide an unambiguous indication of neutron capture can substantially reduce random coincidence backgrounds in antineutrino detection and capture-gated neutron spectrometry applications. Here we investig ate the performance of such a material, a composite of plastic scintillator and $^6$Li$_6^{nat}$Gd$(^{10}$BO$_{3})_{3}$:Ce (LGB) crystal shards of ~1 mm dimension and comprising 1% of the detector by mass. While it is found that the optical propagation properties of this material as currently fabricated are only marginally acceptable for antineutrino detection, its neutron capture identification ability is encouraging.
Photomultiplier tubes (PMTs) are widely used in neutrino and other experiments for the detection of weak light. To date PMTs are the most sensitive single photon detector per unit area. In addition to the quantum efficiency for photon detection, ther e are a number of other specifications, such as rate and amplitude of after-pulses, dark noise rate, transit time spread, radioactive background of glass, peak-to-valley ratio, etc. All affect the photon detection and hence the physics goals. In addition, cost is another major factor for large experiments. It is important to know how to properly take into account all these parameters and choose the most appropriate PMTs. In this paper, we present an approach to quantify the impact of all parameters on the physics goals, including cost and risk. This method has been successfully used in the JUNO experiment. It can be applied to other experiments with large number of PMTs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا