ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

215   0   0.0 ( 0 )
 نشر من قبل Melinda Sweany
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $pm$ 0.03 for Carbostyril-124, and 1.20 $pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.



قيم البحث

اقرأ أيضاً

MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water-Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches and the detection of neutrinos from supernovae, solar, and atmospheric neutrinos, as well as neutrinos from a future beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. This paper provides an overview of the latest studies on the expected performance of MEMPHYS in view of detailed estimates of its physics reach, mainly concerning neutrino beams.
A large acceptance scintillator detector with wavelength shifting optical fibre readout has been designed and built to detect the decay particles of $eta$-nucleus bound system (the so-called $eta$-mesic nuclei), namely, protons and pions. The detecto r, named as ENSTAR detector, consists of 122 pieces of plastic scintillator of various shapes and sizes, which are arranged in a cylindrical geometry to provide particle identification, energy loss and coarse position information for these particles. A solid angle coverage of $sim$95% of total 4$pi$ is obtained in the present design of the detector. Monte Carlo phase space calculations performed to simulate the formation and decay of $eta$-mesic nuclei suggest that its decay particles, the protons and pions are emitted with an opening angle of 150$^circ pm 20^circ$, and with energies in the range of 25 to 300 MeV and 225 to 450 MeV respectively. The detailed GEANT simulations show that $sim$ 80 % of the decay particles (protons and pions) can be detected within ENSTAR. Several test measurements using alpha source, cosmic-ray muons etc. have been carried out to study the response of ENSTAR scintillator pieces. The in-beam tests of fully assembled detector with proton beam of momentum 870 MeV/c from the Cooler synchrotron COSY have been performed. The test results show that the scintillator fiber design chosen for the detector has performed satisfactorily well. The present article describes the detector design, simulation studies, construction details and test results.
120 - Abhishek Abhishek 2019
Matter-antimatter asymmetry is one of the major unsolved problems in physics that can be probed through precision measurements of charge-parity symmetry violation at current and next-generation neutrino oscillation experiments. In this work, we demon strate the capability of variational autoencoders and normalizing flows to approximate the generative distribution of simulated data for water Cherenkov detectors commonly used in these experiments. We study the performance of these methods and their applicability for semi-supervised learning and synthetic data generation.
Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. In our institute we are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.
The application of machine learning techniques to the reconstruction of lepton energies in water Cherenkov detectors is discussed and illustrated for TITUS, a proposed intermediate detector for the Hyper-Kamiokande experiment. It is found that applyi ng these techniques leads to an improvement of more than 50% in the energy resolution for all lepton energies compared to an approach based upon lookup tables. Machine learning techniques can be easily applied to different detector configurations and the results are comparable to likelihood-function based techniques that are currently used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا