ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200

65   0   0.0 ( 0 )
 نشر من قبل Sergei Demidov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reanalyze the dataset collected during the years 1998--2003 by the deep underwater neutrino telescope NT200 in the lake Baikal with the low energy threshold (10 GeV) in searches for neutrino signal from dark matter annihilations near the center of the Milky Way. Two different approaches are used in the present analysis: counting events in the cones around the direction towards the Galactic Center and the maximum likelihood method. We assume that the dark matter particles annihilate dominantly over one of the annihilation channels $bbar{b}$, $W^+W^-$, $tau^+tau^-$, $mu^+mu^-$ or $ ubar{ u}$. No significant excess of events towards the Galactic Center over expected neutrino background of atmospheric origin is found and we derive 90% CL upper limits on the annihilation cross section of dark matter.



قيم البحث

اقرأ أيضاً

We have analyzed a data set taken over 2.76 years live time with the Baikal neutrino telescope NT200. The goal of the analysis is to search for neutrinos from dark matter annihilation in the center of the Sun. Apart from the conventional annihilation channels $bbar{b}$, $W^+W^-$ and $tau^+tau^-$ we consider also the annihilation of dark matter particles into monochromatic neutrinos. From the absence of any excess of events from the direction of the Sun over the expected background, we derive 90% upper limits on the fluxes of muons and muon neutrinos from the Sun, as well as on the elastic cross sections of dark matter scattering on protons.
A search for a very-high-energy (VHE; >= 100 GeV) gamma-ray signal from self-annihilating particle Dark Matter (DM) is performed towards a region of projected distance r ~ 45-150 pc from the Galactic Center. The background-subtracted gamma-ray spectr um measured with the High Energy Stereoscopic System (H.E.S.S.) gamma-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual gamma-ray flux. Assuming conventional Navarro-Frenk-White (NFW) and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section < sigma v> as a function of the DM particle mass. These are among the best reported so far for this energy range. In particular, for the DM particle mass of ~1 TeV, values for <sigma v> above 3 * 10^(-25) cm^3 s^(-1) are excluded for the Einasto density profile. The limits derived here differ much less for the chosen density profile parametrizations, as opposed to limits from gamma-ray observations of dwarf galaxies or the very center of the Milky Way, where the discrepancy is significantly larger.
In present analysis we complete search for a dark matter signal with the Baikal neutrino telescope NT200 from potential sources in the sky. We use five years of data and look for neutrinos from dark matter annihilations in the dwarfs spheroidal galax ies in the Southern hemisphere and the Large Magellanic Cloud known as the largest and close satellite galaxy of the Milky Way. We do not find any excess in observed data over expected background from the atmospheric neutrinos towards the LMC or any of tested 22 dwarfs. We perform a joint likelihood analysis on the sample of five selected dwarfs and found a concordance of the data with null hypothesis of the background-only observation. We derive 90% CL upper limits on the cross section of annihilating dark matter particles of mass between 30 GeV and 10 TeV into several channels both in our combined analysis of the dwarfs and in a particular analysis towards the LMC.
An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated ON/OFF observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found i n a total of $sim 9$ h of ON/OFF observations. Upper limits on the velocity averaged cross section, $<sigma v >$, for the annihilation of dark matter particles with masses in the range of $sim 300$ GeV to $sim 10$ TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of $<sigma v >$ that are larger than $3cdot 10^{-24}:mathrm{cm^3/s}$ are excluded for dark matter particles with masses between $sim 1$ and $sim 4$ TeV at 95% CL if the radius of the central dark matter density core does not exceed $500$ pc. This is the strongest constraint that is derived on $<sigma v>$ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.
We present the results of a new analysis of data taken in 1998-2002 for a search for high-energy extraterrestrial neutrinos. The analysis is based on a full reconstruction of high-energy cascade parameters: vertex coordinates, energy and arrival dire ction. Upper limits on the diffuse fluxes of all neutrino flavors, predicted by several models of AGN-like neutrino sources are derived. For an ${bf E^{-2}}$ behavior of the neutrino spectrum, our limit is ${bf E^{2} F_{ u}(E) < 2.9 times 10^{-7}}$ cm${bf ^{-2}}$ s${bf ^{-1}}$ sr${bf ^{-1}}$ GeV over a neutrino energy range ${bf 2 times 10^4 div 2 times 10^7}$ GeV. This limit is by a factor of 2.8 more stringent than a limit obtained with a previous analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا