ﻻ يوجد ملخص باللغة العربية
An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated ON/OFF observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of $sim 9$ h of ON/OFF observations. Upper limits on the velocity averaged cross section, $<sigma v >$, for the annihilation of dark matter particles with masses in the range of $sim 300$ GeV to $sim 10$ TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of $<sigma v >$ that are larger than $3cdot 10^{-24}:mathrm{cm^3/s}$ are excluded for dark matter particles with masses between $sim 1$ and $sim 4$ TeV at 95% CL if the radius of the central dark matter density core does not exceed $500$ pc. This is the strongest constraint that is derived on $<sigma v>$ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.
A search for a very-high-energy (VHE; >= 100 GeV) gamma-ray signal from self-annihilating particle Dark Matter (DM) is performed towards a region of projected distance r ~ 45-150 pc from the Galactic Center. The background-subtracted gamma-ray spectr
We reanalyze the dataset collected during the years 1998--2003 by the deep underwater neutrino telescope NT200 in the lake Baikal with the low energy threshold (10 GeV) in searches for neutrino signal from dark matter annihilations near the center of
The presence of dark matter (DM) is suggested by a wealth of astrophysical and cosmological measurements. However, its underlying nature is yet unknown. Among the most promising candidates are weakly interacting massive particles (WIMPs): particles w
Dwarf spheroidal galaxies have a large mass to light ratio and low astrophysical background, and are therefore considered one of the most promising targets for dark matter searches in the gamma-ray band. By applying a joint likelihood analysis, the p
Cosmological N-body simulations show that Milky-Way-sized galaxies harbor a population of unmerged dark matter subhalos. These subhalos could shine in gamma rays and be eventually detected in gamma-ray surveys as unidentified sources. We search for v