ﻻ يوجد ملخص باللغة العربية
We present the quantitative phase diagram of the bilayer bosonic fractional quantum Hall system on the torus geometry at total filling factor $ u=1$ in the lowest Landau level. We consider short-range interactions within and between the two layers, as well as the inter-layer tunneling. In the fully polarized regime, we provide an updated detailed numerical analysis to establish the presence of the Moore-Read phase of both even and odd numbers of particles. In the actual bilayer situation, we find that both inter-layer interactions and tunneling can provide the physical mechanism necessary for the low-energy physics to be driven by the fully polarized regime, thus leading to the emergence of the Moore-Read phase. Inter-layer interactions favor a ferromagnetic phase when the system is $SU(2)$ symmetric, while the inter-layer tunneling acts as a Zeeman field polarizing the system. Besides the Moore-Read phase, the $(220)$ Halperin state and the coupled Moore-Read state are also realized in this model. We study their stability against each other.
Recent low temperature heat capacity (C$_P$) measurements on polycrystalline samples of the pyrochlore antiferromagnet Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$ have shown a strong sensitivity to the precise Tb concentration $x$, with a large anomaly exhibit
The past few years have witnessed increased attention to the quest for Majorana-like excitations in the condensed matter community. As a promising candidate in this race, the one-dimensional chiral Majorana edge mode (CMEM) in topological insulator-s
The frustrated XY model on the honeycomb lattice has drawn lots of attentions because of the potential emergence of chiral spin liquid (CSL) with the increasing of frustrations or competing interactions. In this work, we study the extended spin-$frac
We study the zero-temperature phase diagram of the spin-$frac{1}{2}$ Heisenberg model with breathing anisotropy (i.e., with different coupling strength on the upward and downward triangles) on the kagome lattice. Our study relies on large scale tenso
The zero-temperature quantum phase diagram of the spin-$frac{1}{2}$ $J_{1}$--$J_{2}$--$J_{1}^{perp}$ model on an $AA$-stacked bilayer honeycomb lattice is investigated using the coupled cluster method (CCM). The model comprises two monolayers in each