ترغب بنشر مسار تعليمي؟ اضغط هنا

Superresolution Microscopy of the Volume Phase Transition of pNIPAM Microgels

47   0   0.0 ( 0 )
 نشر من قبل Frank Scheffold
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hierarchical polymer structures such as pNIPAM microgels have been extensively studied for their ability to undergo significant structural and physical transformations that can be controlled by external stimuli such as temperature, pH or solvent composition. However, direct three-dimensional visualization of individual particles in situ have so far been hindered by insufficient resolution, with optical microscopy, or contrast, with electron microscopy. In recent years superresolution microscopy techniques have emerged that in principle can provide nanoscopic optical resolution. Here we report on the in-situ superresolution microscopy of dye-labeled submicron sized pNIPAM microgels revealing the internal microstructure during swelling and collapse of individual particles. Using direct STochastic Optical Reconstruction Microscopy (dSTORM) we demonstrate a lateral optical resolution of 30nm and an axial resolution of 60nm.

قيم البحث

اقرأ أيضاً

The volume phase transition of microgels is one of the most paradigmatic examples of stimuli-responsiveness, enabling a collapse from a highly swollen microgel state into a densely coiled state by an external stimulus. Although well characterized in bulk, it remains unclear how the phase transition is affected by the presence of a confining interface. Here, we demonstrate that the temperature-induced volume phase transition of poly(N-isopropylacrylamide) microgels, conventionally considered an intrinsic molecular property of the polymer, is in fact largely suppressed when the microgel is adsorbed to an air/liquid interface. We further observe a hysteresis in core morphology and interfacial pressure between heating and cooling cycles. Our results, supported by molecular dynamics simulations, reveal that the dangling polymer chains of microgel particles, spread at the interface under the influence of surface tension, do not undergo any volume phase transition, demonstrating that the balance in free energy responsible for the volume phase transition is fundamentally altered by interfacial confinement. These results imply that important technological properties of such systems, including the temperature-induced destabilization of emulsions does not occur via a decrease in interfacial coverage of the microgels.
We show that the lack of inversion symmetry in monolayer MoS2 allows strong optical second harmonic generation. Second harmonic of an 810-nm pulse is generated in a mechanically exfoliated monolayer, with a nonlinear susceptibility on the order of 1E -7 m/V. The susceptibility reduces by a factor of seven in trilayers, and by about two orders of magnitude in even layers. A proof-of-principle second harmonic microscopy measurement is performed on samples grown by chemical vapor deposition, which illustrates potential applications of this effect in fast and non-invasive detection of crystalline orientation, thickness uniformity, layer stacking, and single-crystal domain size of atomically thin films of MoS2 and similar materials.
We report here the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture, PMMA/3-octanone, when this is enlightened by a strongly focused infrared laser beam. PMMA/3-octanone has a UCST (Upper Critical Solution Temperature) which presents a critical point at temperature Tc = 306.6 K and volume fraction $phi$c = 12.8 % [Crauste et al., ArXiv 1310.6720, 2012]. This oscillatory phenomenon appears because of thermophoretic and electrostriction effects and non-linear diffusion. We analyze these oscillations and we propose a simple model which includes the minimal ingredients to produce the oscillatory behavior. Phase transitions in binary mixtures are still a widely studied subject, specifically near the critical point where several interesting and not completely understood phenomena may appear, among them we recall the critical Casimir forces [2],[3], confinement effects [4], [5] and out-of-equilibrium dynamics after a quench. The perturbation of the binary mixtures by mean of external fields is also an important and recent field of investigation [6]. For example, a laser can induce interesting phenomena in demixing binary mixtures because the radiation pressure can deform the interface between the two phases and it can be used to measure the interface tension [7]. Depending on the nature of the binary mixtures, laser illumination can also lead to a mixing or demixing transition. In ref.[8], focused infrared laser light heats the medium initially in the homogeneous phase and causes a separation in the LCST (Low Critical Solution Temperature) system. The radiation pressure gradients in a laser beam also contribute in the aggregation of polymers , thus producing a phase transition. The local heating may induce thermophoretic forces which attract towards the laser beam one of the binary-mixture components [9]. Other forces like electrostriction can also be involved [10]. In this letter, we report a new phenomenon, which consists in an oscillating phase transition induced by a constant illumination from an infrared laser beam in the heterogeneous region of an UCST (Upper Critical Solution Temperature) binary mixture. Oscillation phenomena in phase transition have already been reported in slow cooling UCST [11],[12] but as far as we know, never induced by a stationary laser illumination. After describing our experimental setup , we will present the results. Then we will use a very simplified model which contains the main necessary physical ingredients to induce this oscillation phenomenon.
The influence of shape fluctuations on deformable thermosensitive microgels in aqueous solution is investigated by dynamic light scattering (DLS) and depolarized dynamic light scattering (DDLS). The systems under study consist of a solid core of poly styrene and a thermosensitive shell of cross-linked poly(N-isopropylacrylamide) (PNIPA) without and with embedded palladium nanoparticles. PNIPA is soluble in water, but has a lower critical solution temperature at 32 C (LCST). Below the LCST the PNIPA shell is swollen. Here we find that besides translational and rotational diffusion, the particles exhibit additional dynamics resulting from shape fluctuations. This leads to a pronounced apparent increase of the rotational diffusion coefficient. Above the transition temperature the shell collapses and provides a rather tight envelope of the core. In this state the dynamics of the shell is frozen and the core-shell particles behave like hard spheres. A simple physical model is presented to capture and explain the essentials of the coupling of rotational motion and shape fluctuations.
The equilibrium properties of ionic microgels are investigated using a combination of the Poisson-Boltzmann and Flory theories. Swelling behavior, density profiles, and effective charges are all calculated in a self-consistent way. Special attention is given to the effects of salinity on these quantities. It is found that the equilibrium microgel size is strongly influenced by the amount of added salt. Increasing the salt concentration leads to a considerable reduction of the microgel volume, which therefore releases its internal material -- solvent molecules and dissociated ions -- into the solution. Finally, the question of charge renormalization of ionic microgels in the context of the cell model is briefly addressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا