ترغب بنشر مسار تعليمي؟ اضغط هنا

Second harmonic microscopy of monolayer MoS2

123   0   0.0 ( 0 )
 نشر من قبل Hui Zhao
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the lack of inversion symmetry in monolayer MoS2 allows strong optical second harmonic generation. Second harmonic of an 810-nm pulse is generated in a mechanically exfoliated monolayer, with a nonlinear susceptibility on the order of 1E-7 m/V. The susceptibility reduces by a factor of seven in trilayers, and by about two orders of magnitude in even layers. A proof-of-principle second harmonic microscopy measurement is performed on samples grown by chemical vapor deposition, which illustrates potential applications of this effect in fast and non-invasive detection of crystalline orientation, thickness uniformity, layer stacking, and single-crystal domain size of atomically thin films of MoS2 and similar materials.

قيم البحث

اقرأ أيضاً

Recent experiments in the topological Weyl semimetal TaAs have observed record-breaking second-harmonic generation, a non-linear optical response at $2omega$ generated by an incoming light source at $omega$. However, whether second-harmonic generatio n is enhanced in topological semimetals in general is a challenging open question because their band structure entangles the contributions arising from trivial bands and topological band crossings. In this work, we circumvent this problem by studying RhSi, a chiral topological semimetal with a simple band structure with topological multifold fermions close to the Fermi energy. We measure second-harmonic generation (SHG) in a wide frequency window, $omegain [0.27,1.5]$eV and, using first principle calculations, we establish that, due to their linear dispersion, the contribution of multifold fermions to SHG is subdominant as compared with other regions in the Brillouin zone. Our calculations suggest that parts of the bands where the dispersion is relatively flat contribute significantly to SHG. As a whole, our results suggest avenues to enhance SHG responses.
Metal contacts are a key limiter to the electronic performance of two-dimensional (2D) semiconductor devices. Here we present a comprehensive study of contact interfaces between seven metals (Y, Sc, Ag, Al, Ti, Au, Ni, with work functions from 3.1 to 5.2 eV) and monolayer MoS2 grown by chemical vapor deposition. We evaporate thin metal films onto MoS2 and study the interfaces by Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, and electrical characterization. We uncover that, 1) ultrathin oxidized Al dopes MoS2 n-type (> 2x10^12 1/cm^2) without degrading its mobility, 2) Ag, Au, and Ni deposition causes varying levels of damage to MoS2 (broadening Raman E peak from <3 1/cm to >6 1/cm), and 3) Ti, Sc, and Y react with MoS2. Reactive metals must be avoided in contacts to monolayer MoS2, but control studies reveal the reaction is mostly limited to the top layer of multilayer films. Finally, we find that 4) thin metals do not significantly strain MoS2, as confirmed by X-ray diffraction. These are important findings for metal contacts to MoS2, and broadly applicable to many other 2D semiconductors.
Second harmonic generation (SHG) is a non-linear optical process, where two photons coherently combine into one photon of twice their energy. Efficient SHG occurs for crystals with broken inversion symmetry, such as transition metal dichalcogenide mo nolayers. Here we show tuning of non-linear optical processes in an inversion symmetric crystal. This tunability is based on the unique properties of bilayer MoS2, that shows strong optical oscillator strength for the intra- but also inter-layer exciton resonances. As we tune the SHG signal onto these resonances by varying the laser energy, the SHG amplitude is enhanced by several orders of magnitude. In the resonant case the bilayer SHG signal reaches amplitudes comparable to the off-resonant signal from a monolayer. In applied electric fields the interlayer exciton energies can be tuned due to their in-built electric dipole via the Stark effect. As a result the interlayer exciton degeneracy is lifted and the bilayer SHG response is further enhanced by an additional two orders of magnitude, well reproduced by our model calculations.
We report electrical characterization of monolayer molybdenum disulfide (MoS2) devices using a thin layer of polymer electrolyte consisting of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) as both a contact-barrier reducer and channel m obility booster. We find that bare MoS2 devices (without polymer electrolyte) fabricated on Si/SiO2 have low channel mobility and large contact resistance, both of which severely limit the field-effect mobility of the devices. A thin layer of PEO/ LiClO4 deposited on top of the devices not only substantially reduces the contact resistance but also boost the channel mobility, leading up to three-orders-of-magnitude enhancement of the field-effect mobility of the device. When the polymer electrolyte is used as a gate medium, the MoS2 field-effect transistors exhibit excellent device characteristics such as a near ideal subthreshold swing and an on/off ratio of 106 as a result of the strong gate-channel coupling.
Optical second-harmonic generation (SHG) is a nonlinear parametric process that doubles the frequency of incoming light. Only allowed in non-centrosymmetric materials, it has been widely used in frequency modulation of lasers, surface scientific inve stigation, and label-free imaging in biological and medical sciences. Two-dimensional crystals are ideal SHG-materials not only for their strong light-matter interaction and atomic thickness defying the phase-matching requirement but also for their stackability into customized hetero-crystals with high angular precision and material diversity. Here we directly show that SHG in hetero-bilayers of transition metal dichalcogenides (TMDs) is governed by optical interference between two coherent SH fields with material-dependent phase delays using spectral phase interferometry. We also quantify the frequency-dependent phase difference between MoS2 and WS2, which also agrees with polarization-resolved data and first-principles calculations on complex susceptibility. The second-harmonic analogue of Young double-slit interference shown in this work demonstrates the potential of custom-designed parametric generation by atom-thick nonlinear optical materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا