ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical transport in nano-thick ZrTe$_5$ sheets: from three to two dimensions

71   0   0.0 ( 0 )
 نشر من قبل Xiaosong Wu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ZrTe$_5$ is a newly discovered topological material. Shortly after a single layer ZrTe$_5$ had been predicted to be a two-dimensional topological insulator, a handful of experiments have been carried out on bulk ZrTe$_5$ crystals, which however suggest that its bulk form may be a three-dimensional topological Dirac semimetal. We report the first transport study on ultra thin ZrTe$_5$ flakes down to 10 nm. A significant modulation of the characteristic resistivity maximum in the temperature dependence by thickness has been observed. Remarkably, the metallic behavior, occurring only below about 150 K in bulk, persists to over 320 K for flakes less than 20 nm thick. Furthermore, the resistivity maximum can be greatly tuned by ionic gating. Combined with the Hall resistance, we identify contributions from a semiconducting and a semimetallic bands. The enhancement of the metallic state in thin flakes are consequence of shifting of the energy bands. Our results suggest that the band structure sensitively depends on the film thickness, which may explain the divergent experimental observations on bulk materials.

قيم البحث

اقرأ أيضاً

165 - Niraj Aryal , Xilian Jin , Q. Li 2020
We use first-principles methods to reveal that in ZrTe$_5$, a layered van der Waals material like graphite, atomic displacements corresponding to five of the six zone-center A$_g$ (symmetry-preserving) phonon modes can drive a topological phase trans ition from strong to weak topological insulator with a Dirac semimetal state emerging at the transition, giving rise to a Dirac topology surface in the multi-dimensional space formed by the A$_g$ phonon modes. This implies that the topological phase transition in ZrTe$_5$ can be realized with many different settings of external stimuli that are capable of penetrating through the phonon-space Dirac surface without breaking the crystallographic symmetry. Furthermore, we predict that domains with effective mass of opposite signs can be created by laser pumping and will host Weyl modes of opposite chirality propagating along the domain boundaries. Studying phonon-space topology surfaces provides a new route to understanding and utilizing the exotic physical properties of ZrTe$_5$ and related quantum materials.
Three dimensional (3D) topological Dirac materials are under intensive study recently. The layered compound ZrTe$_5$ has been suggested to be one of them by transport and ARPES experiments. Here, we perform infrared reflectivity measurement to invest igate the underlying physics of this material. The derived optical conductivity exhibits linear increasing with frequency below normal interband transitions, which provides the first optical spectroscopic proof of a 3D Dirac semimetal. Apart from that, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be associated with the consequence of lattice parameter shrinking. In addition, an extremely sharp peak shows up in the frequency dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.
We have performed a systematic high-momentum-resolution photoemission study on ZrTe$_5$ using $6$ eV photon energy. We have measured the band structure near the $Gamma$ point, and quantified the gap between the conduction and valence band as $18 leq Delta leq 29$ meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the 3D nature of the materials band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe$_5$ is not a 3D strong topological insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe$_5$ being a 3D weak topological insulator.
Zirconium pentatetelluride, ZrTe5, shows remarkable sensitivity to hydrostatic pressure. In this work we address the high-pressure transport and optical properties of this compound, on samples grown by flux and charge vapor transport. The high-pressu re resistivity is measured up to 2 GPa, and the infrared transmission up to 9 GPa. The dc conductivity anisotropy is determined using a microstructured sample. Together, the transport and optical measurements allow us to discern band parameters with and without the hydrostatic pressure, in particular the Fermi level, and the effective mass in the less conducting, out-of-plane direction. The results are interpreted within a simple two-band model characterized by a Dirac-like, linear in-plane band dispersion, and a parabolic out-of-plane dispersion.
A simple one-stage solution-based method was developed to produce graphene nanoribbons by sonicating graphite powder in organic solutions with polymer surfactant. The graphene nanoribbons were deposited on silicon substrate, and characterized by Rama n spectroscopy and atomic force microscopy. Single-layer and few-layer graphene nanoribbons with a width ranging from sub-10 nm to tens of nm and length ranging from hundreds of nm to 1 {mu}m were routinely observed. Electrical transport properties of individual graphene nanoribbons were measured in both the back-gate and polymer-electrolyte top-gate configurations. The mobility of the graphene nanoribbons was found to be over an order of magnitude higher when measured in the latter than in the former configuration (without the polymer electrolyte), which can be attributed to the screening of the charged impurities by the counter-ions in the polymer electrolyte. This finding suggests that the charge transport in these solution-produced graphene nanoribbons is largely limited by charged impurity scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا