ﻻ يوجد ملخص باللغة العربية
We examined the electrical transport properties of densified LaOBiS2-xSex, which constitutes a new family of thermoelectric materials. The power factor increased with increasing concentration of Se, i.e., Se substitution led to an enhanced electrical conductivity, without suppression of the Seebeck coefficient. Hall measurements indicated that the low electrical resistivity resulted from increases in the carrier mobility, and the decrease in carrier concentration led to large absolute values of the Seebeck coefficient of the system.
We examined the crystal structure of the new thermoelectric material LaOBiS2-xSex, whose thermoelectric performance is enhanced by Se substitution, by using powder synchrotron X-ray diffraction and Rietveld refinement. The emergence of metallic condu
One-dimensional tellurides Ta4SiTe4 and Nb4SiTe4 were found to show high thermoelectric performance below room temperature. This study reported the synthesis and thermoelectric properties of whisker crystals of Ta4SiTe4-Nb4SiTe4 solid solutions and M
We show that synthesis-induced Metal -Insulator transition (MIT) for electronic transport along the orthorombic c axis of FeSb$_{2}$ single crystals has greatly enhanced electrical conductivity while keeping the thermopower at a relatively high level
In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effect in practice.
Electron-phonon interaction (EPI) is presumably detrimental for thermoelectric performance in semiconductors because it limits carrier mobility. Here we show that enhanced EPI with strong energy dependence offers an intrinsic pathway to significant i