ترغب بنشر مسار تعليمي؟ اضغط هنا

Elliptic and parabolic equations with Dirichlet conditions at infinity on Riemannian manifolds

98   0   0.0 ( 0 )
 نشر من قبل Dario Monticelli
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate existence and uniqueness of bounded solutions of parabolic equations with unbounded coefficients in $Mtimes mathbb R_+$, where $M$ is a complete noncompact Riemannian manifold. Under specific assumptions, we establish existence of solutions satisfying prescribed conditions at infinity, depending on the direction along which infinity is approached. Moreover, the large-time behavior of such solutions is studied. We consider also elliptic equations on $M$ with similar conditions at infinity.

قيم البحث

اقرأ أيضاً

We prove an existence result for the Poisson equation on non-compact Riemannian manifolds satisfying weighted Poincare inequalities outside compact sets. Our result applies to a large class of manifolds including, for instance, all non-parabolic mani folds with minimal positive Greens function vanishing at infinity. On the source function we assume a sharp pointwise decay depending on the weight appearing in the Poincare inequality and on the behavior of the Ricci curvature at infinity. We do not require any curvature or spectral assumptions on the manifold.
We investigate existence and nonexistence of stationary stable nonconstant solutions, i.e. patterns, of semilinear parabolic problems in bounded domains of Riemannian manifolds satisfying Robin boundary conditions. These problems arise in several mod els in applications, in particular in Mathematical Biology. We point out the role both of the nonlinearity and of geometric objects such as the Ricci curvature of the manifold, the second fundamental form of the boundary of the domain and its mean curvature. Special attention is devoted to surfaces of revolution and to spherically symmetric manifolds, where we prove refined results.
89 - Fabio Punzo 2021
We study existence and non-existence of global solutions to the semilinear heat equation with a drift term and a power-like source term, on Cartan-Hadamard manifolds. Under suitable assumptions on Ricci and sectional curvatures, we show that global s olutions cannot exists if the initial datum is large enough. Furthermore, under appropriate conditions on the drift term, global existence is obtained, if the initial datum is sufficiently small. We also deal with Riemannian manifolds whose Ricci curvature tends to zero at infinity sufficiently fast.
348 - Hongjie Dong , Tuoc Phan 2020
We consider the Dirichlet problem for a class of elliptic and parabolic equations in the upper-half space $mathbb{R}^d_+$, where the coefficients are the product of $x_d^alpha, alpha in (-infty, 1),$ and a bounded uniformly elliptic matrix of coeffic ients. Thus, the coefficients are singular or degenerate near the boundary ${x_d =0}$ and they may not locally integrable. The novelty of the work is that we find proper weights under which the existence, uniqueness, and regularity of solutions in Sobolev spaces are established. These results appear to be the first of their kind and are new even if the coefficients are constant. They are also readily extended to systems of equations.
We investigate the well-posedness of the fast diffusion equation (FDE) in a wide class of noncompact Riemannian manifolds. Existence and uniqueness of solutions for globally integrable initial data was established in [5]. However, in the Euclidean sp ace, it is known from Herrero and Pierre [20] that the Cauchy problem associated with the FDE is well posed for initial data that are merely in $ L^1_{mathrm{loc}} $. We establish here that such data still give rise to global solutions on general Riemannian manifolds. If, in addition, the radial Ricci curvature satisfies a suitable pointwise bound from below (possibly diverging to $-infty$ at spatial infinity), we prove that also uniqueness holds, for the same type of data, in the class of strong solutions. Besides, under the further assumption that the initial datum is in $L^2_{mathrm{loc}}$ and nonnegative, a minimal solution is shown to exist, and we are able to establish uniqueness of purely (nonnegative) distributional solutions, which to our knowledge was not known before even in the Euclidean space. The required curvature bound is in fact sharp, since on model manifolds it turns out to be equivalent to stochastic completeness, and it was shown in [13] that uniqueness for the FDE fails even in the class of bounded solutions on manifolds that are not stochastically complete. Qualitatively this amounts to asking that the curvature diverges at most quadratically at infinity. A crucial ingredient of the uniqueness result is the proof of nonexistence of distributional subsolutions to certain semilinear elliptic equations with power nonlinearities, of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا