ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Weiss-Weinstein bounds for quantum metrology

97   0   0.0 ( 0 )
 نشر من قبل Xiao-Ming Lu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sensing and imaging are among the most important applications of quantum information science. To investigate their fundamental limits and the possibility of quantum enhancements, researchers have for decades relied on the quantum Cramer-Rao lower error bounds pioneered by Helstrom. Recent work, however, has called into question the tightness of those bounds for highly nonclassical states in the non-asymptotic regime, and better methods are now needed to assess the attainable quantum limits in reality. Here we propose a new class of quantum bounds called quantum Weiss-Weinstein bounds, which include Cramer-Rao-type inequalities as special cases but can also be significantly tighter to the attainable error. We demonstrate the superiority of our bounds through the derivation of a Heisenberg limit and phase-estimation examples.



قيم البحث

اقرأ أيضاً

425 - Jan Kolodynski 2014
In an idealistic setting, quantum metrology protocols allow to sense physical parameters with mean squared error that scales as $1/N^2$ with the number of particles involved---substantially surpassing the $1/N$-scaling characteristic to classical sta tistics. A natural question arises, whether such an impressive enhancement persists when one takes into account the decoherence effects that are unavoidable in any real-life implementation. In this thesis, we resolve a major part of this issue by describing general techniques that allow to quantify the attainable precision in metrological schemes in the presence of uncorrelated noise. We show that the abstract geometrical structure of a quantum channel describing the noisy evolution of a single particle dictates then critical bounds on the ultimate quantum enhancement. Our results prove that an infinitesimal amount of noise is enough to restrict the precision to scale classically in the asymptotic $N$ limit, and thus constrain the maximal improvement to a constant factor. Although for low numbers of particles the decoherence may be ignored, for large $N$ the presence of noise heavily alters the form of both optimal states and measurements attaining the ultimate resolution. However, the established bounds are then typically achievable with use of techniques natural to current experiments. In this work, we thoroughly introduce the necessary concepts and mathematical tools lying behind metrological tasks, including both frequentist and Bayesian estimation theory frameworks. We provide examples of applications of the methods presented to typical qubit noise models, yet we also discuss in detail the phase estimation tasks in Mach-Zehnder interferometry both in the classical and quantum setting---with particular emphasis given to photonic losses while analysing the impact of decoherence.
The impossibility of superluminal communication is a fundamental principle of physics. Here we show that this principle underpins the performance of several fundamental tasks in quantum information processing and quantum metrology. In particular, we derive tight no-signaling bounds for probabilistic cloning and super-replication that coincide with the corresponding optimal achievable fidelities and rates known. In the context of quantum metrology, we derive the Heisenberg limit from the no-signaling principle for certain scenarios including reference frame alignment and maximum likelihood state estimation. We elaborate on the equivalence of assymptotic phase-covariant cloning and phase estimation for different figures of merit.
68 - Xiao-Ming Lu , Zhihao Ma , 2019
In multiparameter quantum metrology, the weighted-arithmetic-mean error of estimation is often used as a scalar cost function to be minimized during design optimization. However, other types of mean error can reveal different facets of permissible er ror combination. By introducing the weighted $f$-mean of estimation error and quantum Fisher information, we derive various quantum Cramer-Rao bounds on mean error in a very general form and also give their refin
Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilizing entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement.
Quantum metrology research promises approaches to build new sensors that achieve the ultimate level of precision measurement and perform fundamentally better than modern sensors. Practical schemes that tolerate realistic fabrication imperfections and environmental noise are required in order to realise quantum-enhanced sensors and to enable their real-world application. We have demonstrated the key enabling principles of a practical, loss-tolerant approach to photonic quantum metrology designed to harness all multi-photon components in spontaneous parametric downconversion---a method for generating multiple photons that we show requires no further fundamental state engineering for use in practical quantum metrology. We observe a quantum advantage of 28% in precision measurement of optical phase using the four-photon detection component of this scheme, despite 83% system loss. This opens the way to new quantum sensors based on current quantum-optical capabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا