ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism, spin texture and in-gap states: Atomic specialization at the surface of oxygen-deficient SrTiO$_3$

122   0   0.0 ( 0 )
 نشر من قبل Michaela Altmeyer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements performed on the two-dimensional electronic states confined near the (001) surface of SrTiO$_3$ in the presence of oxygen vacancies, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is in- cluded, bands become spin-split with an energy difference ~100 meV at the $Gamma$ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t$_{2g}$ itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.

قيم البحث

اقرأ أيضاً

SrTiO$_3$ (STO) is the substrate of choice to grow oxide thin-films and oxide heterojunctions, which can form quasi-two-dimensional electronic phases that exhibit a wealth of phenomena, and, thus, a workhorse in the emerging field of metal-oxide elec tronics. Hence, it is of great importance to know the exact character of the STO surface itself under various oxygen environments. Using density functional theory within the spin generalized gradient approximation we have investigated the structural, electronic and magnetic properties of the oxygen-deficient STO surface. We find that the surface oxygen vacancies order in periodic arrays giving rise to surface magnetic moments and a quasi two-dimensional electron gas in the occupied Ti 3-d orbitals. The surface confinement, the oxygen-vacancy ordering, and the octahedra distortions give rise to spin-polarized $t_{2g}$ dispersive sub-bands; their energy split near the Brillouin zone center acts as an effective Zeeman term, which, when we turn on a Rashba interaction, produces bands with momentum-spin correlations similar to those recently discovered on oxygen deficient STO surface.
We report the effect of oxygen pressure during growth ($P_{O_{2}}$) on the electronic and magnetic properties of PrAlO$_3$ films grown on $rm TiO_{2}$-terminated SrTiO$_3$ substrates. Resistivity measurements show an increase in the sheet resistance as $P_{O_{2}}$ is increased. The temperature dependence of the sheet resistance at low temperatures is consistent with Kondo theory for $P_{O_{2}} ge 10^{-5}$ torr. Hall effect data exhibit a complex temperature dependence that suggests a compensated carrier density. We observe behavior consistent with two different types of carriers at interfaces grown at $P_{O_{2}} ge 10^{-4}$ torr. For these interfaces, we measured a moderate positive magnetoresistance (MR) due to a strong spin-orbit (SO) interaction at low magnetic fields that evolves into a larger negative MR at high fields. Positive high MR values are associated with samples where a fraction of carriers are derived from oxygen vacancies. Analysis of the MR data permitted the extraction of the SO interaction critical field ( e.g. $ H_{SO}=$1.25 T for $P_{O_{2}}=10^{-5}$ torr). The weak anti-localization effect due to a strong SO interaction becomes smaller for higher $P_{O_{2}}$ grown samples, where MR values are dominated by the Kondo effect, particularly at high magnetic fields.
We reinvestigate the putative giant spin splitting at the surface of SrTiO$_3$ reported by Santander-Syro $et~al.$ [Nature Mat. 13, 1085 (2014)]. Our spin- and angle-resolved photoemission experiments on (001) oriented surfaces supporting a two-dimen sional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is fully consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.
Bodies in relative motion separated by a gap of a few nanometers can experience a tiny friction force. This non-contact dissipation can have various origins and can be successfully measured by a sensitive pendulum atomic force microscope tip oscillat ing laterally above the surface. Here, we report on the observation of dissipation peaks at selected voltage-dependent tip-surface distances for oxygen-deficient strontium titanate (SrTiO_3) surface at low temperatures (T = 5K). The observed dissipation peaks are attributed to tip-induced charge and spin state transitions in quantum-dot-like entities formed by single oxygen vacancies (and clusters thereof, possibly through a collective mechanism) at the SrTiO_3 surface, which in view of technological and fundamental research relevance of the material opens important avenues for further studies and applications.
Localization of electrons in the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ interface is investigated by varying the channel thickness in order to establish the nature of the conducting channel. Layers of SrTiO$_3$ were grown on NdGaO$_3 $ (110) substrates and capped with LaAlO$_3$. When the SrTiO$_3$ thickness is $leq 6$ unit cells, most electrons at the interface are localized, but when the number of SrTiO$_3$ layers is 8-16, the free carrier density approaches $3.3 times 10^{14}$ cm$^{-2}$, the value corresponding to charge transfer of 0.5 electron per unit cell at the interface. The number of delocalized electrons decreases again when the SrTiO$_3$ thickness is $geq 20$ unit cells. The $sim{4}$ nm conducting channel is therefore located significantly below the interface. The results are explained in terms of Anderson localization and the position of the mobility edge with respect to the Fermi level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا