ﻻ يوجد ملخص باللغة العربية
We show that the form of the renormalization group invariant quark-gluon interaction predicted by a refined nonperturbative analysis of the QCD gauge sector is in quantitative agreement with the one required for describing a wide range of hadron observables using sophisticated truncation schemes of the Schwinger-Dyson equations relevant in the matter sector.
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-pe
The value of the light quark masses combination $m_u + m_d$ is analized using QCD-Hadron Duality. A detailed analysis of both the perturbative QCD [to four-loops] and the hadronic parametrization needed is done. The result we get is $[m_u + m_d] (1 G
We review the status of lattice calculations of the deep-inelastic structure functions of the nucleon. In addition, we present some results on the pion and rho structure functions.
Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of s
Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing re