ﻻ يوجد ملخص باللغة العربية
An almost non-abelian extension of the Rieffel deformation is presented in this work. The non-abelicity comes into play by the introduction of unitary groups which are dependent of the infinitesimal generators of $SU(n)$. This extension is applied to quantum mechanics and quantum field theory.
In this contribution to the study of one dimensional point potentials, we prove that if we take the limit $qto 0$ on a potential of the type $v_0delta({y})+{2}v_1delta({y})+w_0delta({y}-q)+ {2} w_1delta({y}-q)$, we obtain a new point potential of the
We construct the general solution of a class of Fuchsian systems of rank $N$ as well as the associated isomonodromic tau functions in terms of semi-degenerate conformal blocks of $W_N$-algebra with central charge $c=N-1$. The simplest example is give
In contrast to Hamiltonian perturbation theory which changes the time evolution, spacelike deformations proceed by changing the translations (momentum operators). The free Maxwell theory is only the first member of an infinite family of spacelike def
The U(1) BF Quantum Field Theory is revisited in the light of Deligne-Beilinson Cohomology. We show how the U(1) Chern-Simons partition function is related to the BF one and how the latter on its turn coincides with an abelian Turaev-Viro invariant.
We consider antibracket superalgebras realized on the smooth Grassmann-valued functions with compact supports in n-dimensional space and with the grading inverse to Grassmanian parity. The deformations with even and odd deformation parameters of these superalgebras are presented for arbitrary n.