ترغب بنشر مسار تعليمي؟ اضغط هنا

Abelian BF theory and Turaev-Viro invariant

67   0   0.0 ( 0 )
 نشر من قبل Frank Thuillier
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The U(1) BF Quantum Field Theory is revisited in the light of Deligne-Beilinson Cohomology. We show how the U(1) Chern-Simons partition function is related to the BF one and how the latter on its turn coincides with an abelian Turaev-Viro invariant. Significant differences compared to the non-abelian case are highlighted.



قيم البحث

اقرأ أيضاً

The Turaev-Viro invariants are a powerful family of topological invariants for distinguishing between different 3-manifolds. They are invaluable for mathematical software, but current algorithms to compute them require exponential time. The invaria nts are parameterised by an integer $r geq 3$. We resolve the question of complexity for $r=3$ and $r=4$, giving simple proofs that computing Turaev-Viro invariants for $r=3$ is polynomial time, but for $r=4$ is #P-hard. Moreover, we give an explicit fixed-parameter tractable algorithm for arbitrary $r$, and show through concrete implementation and experimentation that this algorithm is practical---and indeed preferable---to the prior state of the art for real computation.
202 - A. Much 2015
An almost non-abelian extension of the Rieffel deformation is presented in this work. The non-abelicity comes into play by the introduction of unitary groups which are dependent of the infinitesimal generators of $SU(n)$. This extension is applied to quantum mechanics and quantum field theory.
The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions $4l+3$, whose parameter $k$ is quantized. The generalized Wilson $(2l+1)$-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of $(2l+1)$-loops, first on closed $(4l+3)$-manifolds through a novel geometric computation, then on $mathbb{R}^{4l+3}$ through an unconventional field theoretic computation.
We consider abelian twisted loop Toda equations associated with the complex general linear groups. The Dodd--Bullough--Mikhailov equation is a simplest particular case of the equations under consideration. We construct new soliton solutions of these Toda equations using the method of rational dressing.
We compute some arithmetic path integrals for BF-theory over the ring of integers of a totally imaginary field, which evaluate to natural arithmetic invariants associated to $mathbb{G}_m$ and abelian varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا