ﻻ يوجد ملخص باللغة العربية
The turbulent flow in an infinitely extended plane channel is analysed by solving the Navier-Stokes equations with a DNS approach. Solutions are obtained in a numerical solution domain of finite size in the streamwise as well as in the lateral direction setting periodic boundary conditions in both directions. Their impact on large scale structures in the turbulent flow field is analysed carefully in order to avoid their suppression. When this is done appropriately well known stripe patterns in these flows can be observed and analysed especially with respect to their relative motion compared to the mean flow velocity. Various details of this stripe pattern dominated velocity field are shown. Also global parameters like the friction factor in the flow field and the Nusselt number in the temperature field are determined based on the statistics of the flow and temperature data in a very large time period that guarantees fully developed turbulent flow and heat transfer.
We seek possible statistical consequences of the way a forcing term is added to the Navier--Stokes equations in the Direct Numerical Simulation (DNS) of incompressible channel flow. Simulations driven by constant flow rate, constant pressure gradient
A Direct Numerical Simulation (DNS) of the incompressible flow around a rectangular cylinder with chord-to-thickness ratio 5:1 (also known as the BARC benchmark) is presented. The work replicates the first DNS of this kind recently presented by Cimar
We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the probability distribution function (PDF
We present numerical simulations of laminar and turbulent channel flow of an elastoviscoplastic fluid. The non-Newtonian flow is simulated by solving the full incompressible Navier-Stokes equations coupled with the evolution equation for the elastovi
Turbulence modeling is a classical approach to address the multiscale nature of fluid turbulence. Instead of resolving all scales of motion, which is currently mathematically and numerically intractable, reduced models that capture the large-scale be